I aim to create detailed lessons for KS3 and KS4 science lessons, simplifying content for both teachers and pupils. My lessons include a lot of pupil-centred tasks and modelling activities where appropriate to engage pupils in their learning. As an AQA examiner for the new GCSE trilogy and triple science course I include a lot of 'past paper' style questions in my lessons that match the type of questions students will be asked in examinations.
I aim to create detailed lessons for KS3 and KS4 science lessons, simplifying content for both teachers and pupils. My lessons include a lot of pupil-centred tasks and modelling activities where appropriate to engage pupils in their learning. As an AQA examiner for the new GCSE trilogy and triple science course I include a lot of 'past paper' style questions in my lessons that match the type of questions students will be asked in examinations.
A revision mat for the following required practical activities in the AQA specification:
Titration
Making a soluble salt
Chromatography
Investigating temperature change for a neutralisation reaction
Electrolysis of aqueous solutions
Testing for ions
Would be best printed A3.
A series of 11 simplistic revision mats designed for the Foundation Triple Chemistry specification.
The revision mats contain:
Key definitions with space for students to write in the key term
Basic recall questions/ comprehension tasks followed by short answer questions to test understanding
Summaries of the required practical activities and sample questions based on these RPA’s
There is a revision mat for each topic 1-10 with an additional revision mat for electrolysis (Topic 4 - Chemical changes)
A revision mat for the new AQA GCSE covering the following tests:
Flame tests
Testing for cations using sodium hydroxide
Testing for carbonates
Testing for sulfates
Testing for halides
A useful, visual tool for students to revise from or complete during the practical
A double lesson/ series of lessons looking at exothermic and endothermic reactions, labelling and explaining energy profile diagrams and calculating the overall bond energy for reactions.
The lesson features:
A series of basic recall questions from previous learning (questions on calculating P, N, E, alloys, electrolysis, covalent bonding, formation of ions, giant covalent structures and extraction of metals)
An introduction to the terms endothermic and exothermic using images for students to decifer the meaning of the terms
An animated introduction to energy reaction profiles, explaining how to label the diagrams and the difference between endothermic and exothermic reaction profiles
Numerous review questions in the style of past-exam questions to allow for teacher assessment of progress - labelling reaction profiles, recognising a reaction profile as endo or exothermic, describing reactions as exothermic or endothermic from temperature change values
A step-by-step introduction into bond energy calculations to reduce cognitive overload - pupils are shown how to calculate bond energies for single structures including several practice examples before being shown a worked example of how to work out whether a reaction is exothermic or endothermic using a bond energy calculation.
Two ‘have a go’ bond energy calculations with animated answers to allow for student self-assessment.
A 4 page worksheet containing practice exam-style questions on calculating bond energies, drawing energy reaction profiles and explaining whether reactions are exothermic or endothermic. Answers are included in the worksheet
Lots to choose from here!
A double lesson / series of lessons comparing the processes of mitosis and meisosis, suitable for KS3 or a low/ middle ability KS4 class (lesson is tailored towards the new AQA GCSE scheme). The lesson features:
A ‘find someone who’ starter grid activity with 6 questions recapping cells (differences between animal, plant and bacterial cells, roles of cell organelles)
An introduction to the purpose of mitosis including a link to a video showing aphid cloning and an engaging hook into the lesson considering the replacement of skin cells using mitosis
An explanation for the stages of the cell cycle and mitosis using a diagram
Differentiated activities on the stages of mitosis (a simple ‘ordering the stages’ task, a table where pupils must order and draw an image to represent the stages of mitosis and a ‘true/ false’ review grid
Graphs showing the change in DNA content that students must link to the stages of mitosis and meiosis
Review questions on mitosis including a past paper question
An introduction to the purpose of meiosis using key terms that pupils must discuss and a discussion question
An explanation for the stages of meiosis using a diagram
A slide to compare the processes of mitosis and meiosis using images of each cell division
A comparison table of mitosis and meiosis with animated answers
A 6 mark question comparing mitosis and meiosis with animated markscheme
Review questions on the two processes
A lesson/ series of lessons looking at what is meant by the term ‘mole’, how to calculate the number of moles of a substance, how to rearrange the moles equation to calculate mass or Mr and how to find missing masses from balanced symbol equations using molar ratios. The powerpoint features a lot of step-by-step worked examples and plenty of opportunity for student practice with questions that progress from simple to more complex examples alongside animated answers. Lesson features include:
A 10 question starter quiz based on previous learning with animated answers (questions based on Topic 1, 2 and 3 to assist with long term memory retrieval)
Slides discussing the difference between mass and moles together with an analogy of comparing the term moles to other words used to represent amounts in society - what is meant by a dozen, a century etc.
A link to an engaging video comparing the number of atom to objects in our universe.
Slides discussing the link between moles, mass and Mr alongside questions involving calculating the moles, mass and Mr of a substance. Students are shown how to rearrange the moles equation. Following this worked examples for calculating moles, mass and Mr are then shared on a split board with practice questions next to the worked examples for students to complete. Answers for these questions are animated to allow for student self-assessment.
Slides guiding pupils on how to work out the missing mass of a substance using a balanced symbol equation. A method is shared with pupils to tackle these complex questions with 2 animated examples illustrating step-by-step how to follow the method. Numerous examples are then given for pupils to complete, initially using 1:1 ratios before looking at more complex ratios. All practice questions have full animated answers for student self-assessment
A review task containing 6 questions on calculating missing masses in chemical reactions with animated answers
A potential homework sheet with questions on calculating moles and rearranging the moles equation to calculate mass.
A lesson designed around the AQA GCSE specification looking at how to calculate relative formula mass and how to balance symbol equations. The lesson would also be suitable for an able KS3 class.
The powerpoint features a lot of step-by-step worked examples and plenty of opportunity for student practice with questions that progress from simple to more complex examples alongside animated answers. Lesson features include:
A 10 question starter quiz based on previous AQA GCSE learning with animated answers (questions based on Topic 1 atomic structure content to assist with long term memory retrieval)
Slides explaining to students how to work out the number of different elements and atoms a chemical formula contains, followed by an independent task requiring students put this teaching into practice for a range of different chemical formulae. Answers have been included in the powerpoint to allow for student assessment.
Slides guiding pupils on how to work out the relative formula mass of a substance, incorporating 3 worked examples that contain step-by-step instructions with each stage of the calculation animated via a mouse click.
An independent task requiring students to calculate the relative formula mass for a range of different chemical formulae. Answers have been included in the powerpoint to allow for student assessment.
A slide explaining to students how to deduce an unknown element in a chemical formula when given the relative formula mass, alongside a step-by-step modelled example question and 3 additional practice questions for students to complete
Slides providing a clear method for pupils to follow when balancing symbol equations. To help pupils master the skill of balancing equations the powerpoint contains 5 worked examples progressing in difficulty, with each stage of the calculation process animated via a mouse click.
An independent differentiated task (based on ‘bronze, silver, gold’ medals) incorporating 24 balancing equations questions. Pupils can select which level of the task to work at dependent on their confidence with balancing equations
A fully resourced lesson bundle for the AQA Topic 10 unit - Using Resources. Suitable for foundation and higher tier Triple candidates (content can easily be deleted for Trilogy)
The bundle features double lessons on:
Potable water, waste water and purification of water RPA
Corrosion, alloys and copper extraction (phytomining and bioleaching)
Ceramics, composites and polymers
Sustainability and life cycle assessments
The Haber process and NPK fertilisers
The lessons feature informative, user-friendly slides, links to videos and suggestions of modelling tasks/ teaching activities, regular assessment questions throughout the powerpoints to check understanding with animated answers and a word document with exam-style questions and answers for each lesson
A lesson/ series of lessons recapping the process of electrolysis, understanding how to predict the products when molten ionic compounds are electrolysed and understanding how to apply the series of rules concerning the products of aqueous ionic solutions. The lesson features:
A question grid based on previous learning from topic 4 (extraction of metals, reactivity series, acid reactions, electrolysis)
Basic recap questions looking at the process of electrolysis and labelling an electrolysis cell
-Step-by-step simplified recall practice looking at what is formed at the positive and negative electrodes for molten ionic compounds
Summary slides that explain to students the rules for predicting the products of electrolysis at the positive and negative electrode if the ionic compound is dissolved in solution. This is accompanied by simplified recall practice looking at what is formed at the positive and negative electrodes so students gain confidence in applying the rules to any substance
A recap of how ions are produced.
Instructions for how to complete the required practical looking at the electrolysis of aqueous solutions, including a blank and completed results table for pupil self-assessment
Past paper review questions
Dice revision mats for the entire Edexcel IGCSE biology course.
Work great as a starter, plenary task or revision activity with students working independently or in groups. Students roll a dice twice to determine the question on the grid they must answer.
There are five grids in total - Section 4 and 5 have been grouped together whilst section 2 has been split into 2 grids due to its size.
Please note resources does not come with the answers to the questions
A complete lesson to compare the processes of aerobic and anaerobic respiration. The lesson features engaging video clips looking at the effects of aerobic and anaerobic respiration on the body, a foldable resource with instructions to compare the processes, review questions with answers for assessment and an application of knowledge task to explain the lactic acid concentration in the blood of a runner. A 6 mark question is also included to explain changes in the body during exercise
Lesson on the short and long term effects of alcohol on the body. The lesson features:
A mind map starter on effects of alcohol
Provocative images to aid discussion on the effects of alcohol
Blurred vision task
Exam questions
Long and short term effects card sort
Discussion question on the implications of ethics when treating alcohol abuse followed by a silent debate task
A great revision resource for students, can be used as a starter, plenary, independent learning resource or group activity.
Students roll a dice twice and answer the question in the box corresponding to their numbers. Resource contains questions based on the new AQA GCSE from:
Topic 1: Atomic structure and the periodic table
Topic 2: Bonding, structure and properties
Topic 3: Quantitative chemistry
Please note the resource does not contain answers
A lesson/ series of lessons looking at atoms, elements,compounds, mixtures, the structure of the atom and the history of the atomic model.
Lots of content that could easily cover 3 lessons. A variety of interactive tasks, included,such as:
-Using sweets to model atoms, elements, compounds and mixtures
-A link to a clip from an american sitcom providing a simple, student-friendly analogy for the structure of the atom
-Assessment opportunities using whiteboards
-Visualisation opportunities using props to aid the teaching of developments in the atomic model -
props are easily available/ easy to create with instructions on how to relate each prop to the model of the atom it is demonstrating in the notes section of the powerpoint. The use of these props really helped my students to understand the plum pudding model, Dalton's atomic theory and Rutherford's gold foil experiment.
-A past paper question comparing the current nuclear model to the plum pudding model
-A homework sheet/ worksheet with answers animated at the end of the powerpoint
Two powerpoints and worksheets to guide pupils through the required practical experiments in Topic 6: Rates of reaction (magnesium and hydrochloric acid and sodium thiosulfate and hydrochloric acid). The lessons feature:
- Starter activities to recap factors affecting the rate of a reaction and measuring the rate of a reaction
- Animated powerpoints to help pupils develop a hypothesis for each investigation and identify variables
- Instructions for each practical
- Extension tasks incorporating past paper questions (with animated answers on the powerpoint) to allow pupils to apply their understanding from completion of the required practicals
- Worksheets containing success criteria checklists to guide pupils through the required practical tasks.
A lesson/ series of lessons looking at calculating the rate of a reaction, interpreting graphs showing the rate of a reaction, describing methods to measure the rate of a reaction and an introduction to collision theory. The lesson features:
-Regular AfL opportunities using past paper questions
- Graphs for pupils to discuss and interpret
- Animated answers to questions, allowing pupils to self assess their work
- A worksheet with questions designed to be used as prompts during demonstrations/ a class practical on methods used to measure the rate of a reaction
- Past paper questions applying the concepts taught in the lesson content
A series of lessons for the new AQA GCSE Topic 6 - rates of reaction. The bundle features lessons on:
- Measuring the rate of reaction
- Factors affecting the rate of reaction
- RPA 1 - magnesium and hydrochloric acid
- RPA 2 - sodium thiosulfate and hydrochloric acid
- Reversible reactions and equilibrium (not including Le Chatelier's principle)
A set of lessons covering Topic 8 Chemical analysis. Topics covered include:
Testing for ions
Instrumental analysis techniques (including flame emission spectroscopy)
Testing for gases
Chromatography
A lesson/ series of lessons covering the steps used in the treatment of water (designed specifically to match AQA spec), including the required practical activity to desalinate water and test for the presence of sodium and chloride ions. The lesson features:
- A learning mat following the powerpoint looking at the treatment of freshwater, seawater and wastewater (has missing key terms though could be adapted to provide more challenge)
- Review past paper questions with animated answers on the powerpoint to assess student understanding of water treatment
- Step-by-step instructions including a table of results to allow students to complete the RPA.
- A sheet with success criteria and extension questions to assess student understanding of the RPA task
- Review questions for the lesson
A KS3 lesson explaining the link between genes, chromosomes and DNA. The lesson features:
- A starter task recapping previous learning on cells and sexual reproduction
-A differentiated task describing the link between genes, chromosomes and DNA (features a labelling sheet and powerpoint slides that could be printed out to form information stations)
- A 'what am I' task to assess student understanding of the link between 'genes, chromosomes and DNA'
- A task using sweets to model the 3D structure of DNA and statements that prompt students to explain what the parts of their model represent
- A video looking at the discovery of DNA with corresponding questions
- An evaluation task looking at the contributions of different scientists to the discovery of DNA (fully resourced with cards to be handed out to students in groups)