Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1937k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Nerve impulses (AQA A-level Biology)
GJHeducationGJHeducation

Nerve impulses (AQA A-level Biology)

(0)
This is a highly detailed and engaging lesson that covers the detail of the 2nd part of specification point 6.2.1 of the AQA A-level Biology specification which states that students should be able to describe the establishment of resting potential, the changes in membrane potential that lead to depolarisation and the importance of the refractory period. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes and saltatory conduction. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells. This lesson has been designed for students studying the AQA A-level Biology course and ties in nicely with other uploaded lessons on mammalian sensory receptors and the structures and functions of the neurones.
The Pacinian corpuscle as a SENSORY RECEPTOR (AQA A-level Biology)
GJHeducationGJHeducation

The Pacinian corpuscle as a SENSORY RECEPTOR (AQA A-level Biology)

(1)
This lesson has been designed to cover the content of the 1st part of specification point 6.1.2 of the AQA A-level Biology specification which states that students should know the basic structure of a Pacinian corpuscle and be able to use its function as a representation of sensory receptors. By the end of the lesson students will understand that sensory receptors respond to specific stimuli and how a generator potential is established. The lesson begins by using a quiz to get the students to recognise the range of stimuli which can be detected by receptors. This leads into a task where the students have to form 4 sentences to detail the stimuli which are detected by certain receptors and the energy conversion that happen as a result. Students will be introduced to the idea of a transducer and learn that receptors always convert to electrical energy which is the generator potential. The remainder of the lesson focuses on the Pacinian corpuscle and how this responds to pressure on the skin. The involvement of sodium and potassium ions is introduced so discussions on how the membrane potential changes from resting potential in the establishment of a generator potential are encouraged. This lesson has been written for students studying on the AQA A-level Biology course and ties in nicely with other uploaded lessons which cover the content of topic 6
Saltatory conduction (AQA A-level Biology)
GJHeducationGJHeducation

Saltatory conduction (AQA A-level Biology)

(3)
This fully-resourced lesson covers part #1 of specification point 6.2.1 of the AQA A-level Biology specification which states that students should know the structure of a myelinated motor neurone and be able to explain why saltatory conduction enables a faster conduction along with the effect of axon diameter and temperature. A wide range of activities have been written into this resource to maintain the motivation of the students whilst ensuring that the detail is covered in real depth. Interspersed with the activities are understanding checks and prior knowledge checks to allow the students to not only assess their understanding of the current topic but also challenge themselves to make links to earlier topics such as the movement of ions across membranes and biological molecules. Time at the end of the lesson is also given to future knowledge such as the involvement of autonomic motor neurones in the stimulation of involuntary muscles. Over the course of the lesson, students will learn and discover how the structure of a motor neurone is related to its function over conducting impulses from the CNS to the effector. There is a focus on the myelin sheath and specifically how the insulation is not complete all the way along which leaves gaps known as the nodes of Ranvier which allow the entry and exit of ions. Saltatory conduction is poorly explained by a lot of students so time is taken to look at the way that the action potential jumps between the nodes and this is explained further by reference to local currents. The rest of the lesson focuses on the other two factors which are axon diameter and temperature and students are challenged to discover these two by focusing on the vampire squid. This lesson has been designed for students studying the AQA A-level Biology course
The generation and transmission of NERVE IMPULSES (OCR A level Biology A)
GJHeducationGJHeducation

The generation and transmission of NERVE IMPULSES (OCR A level Biology A)

(3)
This is a highly detailed and engaging lesson that covers the detail of specification point 5.1.1 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the generation and transmission of nerve impulses in mammals. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes and saltatory conduction. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells. This lesson has been designed for students studying the OCR A-level Biology course and ties in nicely with other uploaded lessons on mammalian sensory receptors and the structures and functions of the neurones.
The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)
GJHeducationGJHeducation

The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)

(0)
This is a detailed lesson resource that covers the content of point 5.1.3 (a) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their understanding of the roles of mammalian sensory receptors. There is a particular focus on the Pacinian corpuscle to demonstrate how these receptors act as transducers by converting one form of energy into electrical energy which is then conducted as an electrical impulse along the sensory neurone. The lesson begins by looking at the different types of stimuli that can be detected. This leads into a written task where students have to form sentences to detail how thermoreceptors, rods and cones, hair cells in the inner ear and vibration receptors in the cochlea convert different forms of energy into electrical energy. Students will be introduced to the term transducer and will be challenged to work out what these cells carry out by using their sentences. As stated above, students will meet a Pacinian corpuscle and learn that this receptors detects pressure changes in the skin using the concentric rings of connective tissue in its structure. The rest of the lesson focuses on how ions are involved in the maintenance of resting potential and then depolarisation. Time is taken to look into the key details of these two processes so students are confident with this topic when met again during a lesson on the generation of action potentials. All of the tasks are differentiated to allow students of different abilities to access the work. As well as understanding checks to allow the students to assess their progress against the current topic, there are also a number of prior knowledge checks on topics like inorganic ions and methods of movement. This lesson has been designed for students studying the OCR A-level Biology course
The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)
GJHeducationGJHeducation

The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)

(0)
This is a fully-resourced lesson which covers the detail of point 5.1.3 (b) of the OCR A-level Biology A specification which states that students should be able to apply their understanding of the structures and functions of sensory, relay and motor neurones as well as the differences between myelinated and unmyelinated neurones. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath for the sensory and motor neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones. Throughout the lesson, links are made to the upcoming topic of the organisation of the nervous system (5.1.5) and students will be given additional knowledge such as the differences between somatic and autonomic motor neurones. This lesson has been designed for students studying on the OCR A-level Biology A course.
Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Biology)

10 Resources
Each of the 10 lessons in this bundle have been written to include a wide range of activities that will engage and motivate the students whilst giving them regular oppotunities to assess their understanding of the current topic as well as checking on their knowledge of any previously linked topics. Each lesson has been written for students studying the Edexcel GCSE Biology course and the following specification points in topic 7 are covered by the lessons in this bundle: 7.1: Endocrine glands and the hormones they secrete 7.3: The control of metabolic rate by thyroxine as an example of negative feedback 7.4 & 7.5: The stages and the interactions of the hormones in the menstrual cycle 7.6 & 7.7: Barrier and hormonal contraception, the menstrual cycle and preventing pregnancy 7.8: The use of hormones in Assisted Reproductive Technology 7.9 & 7.10: The importance of homeostasis, including thermoregulation and osmoregulation 7.11 & 7.12: Thermoregulation 7.13 & 7.14: The control of blood glucose concentration by the release of insulin and glucagon 7.15 & 7.16: The causes and control of diabetes type I and II 7.19, 7.20, 7.21 & 7.22: The function of the kidney, the treatments for kidney failure and the formation of urea Each lesson contains a detailed and engaging PowerPoint and accompanying worksheets, most of which are differentiated to enable students of different abilities to access the work.
Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Combined Science)

8 Resources
Each of the 8 lessons in this bundle have been written to include a wide range of activities that will engage and motivate the students whilst giving them regular oppotunities to assess their understanding of the current topic as well as checking on their knowledge of any previously linked topics. Each lesson has been written for students studying the Edexcel GCSE Combined Science course and the following specification points are covered by the lessons in this bundle: 7.1: Endocrine glands and the hormones they secrete 7.3: The control of metabolic rate by thyroxine as an example of negative feedback 7.4 & 7.5: The stages and the interactions of the hormones in the menstrual cycle 7.6 & 7.7: Barrier and hormonal contraception, the menstrual cycle and preventing pregnancy 7.8: The use of hormones in Assisted Reproductive Technology 7.9: The importance of homeostasis 7.13 & 7.14: The control of blood glucose concentration by the release of insulin and glucagon 7.15 & 7.16: The causes and control of diabetes type I and II Each lesson contains a detailed and engaging PowerPoint and accompanying worksheets, most of which are differentiated to enable students of different abilities to access the work.
Thermoregulation (Edexcel GCSE Biology)
GJHeducationGJHeducation

Thermoregulation (Edexcel GCSE Biology)

(1)
This lesson has been designed to cover the content in points 7.11 and 7.12 of the Edexcel GCSE Biology specification which states that students should be able to explain how thermoregulation takes place, with particular reference to the role of the skin. This resource contains an engaging PowerPoint and a differentiated worksheet, which together use a wide range of activities to motivate the students and to engage them in the content matter. The lesson begins by challenging the students to calculate a number from a series of biological based statements. This number is 37 which introduces the students to this temperature as the set-point at which homeostasis acts to maintain the body temperature. At this point of the lesson, a number of prior knowledge checks are used to challenge the students on their recall of the parts of a control system as well as challenging them to explain why temperatures above or below this set point can be problematic for body reactions. The main part of the lesson goes through the steps in the body’s detection and response to an increase in temperature and students will be introduced to the range of structures involved. Time is taken to focus on the role of the skin as an effector and key details about vasodilation and the production of sweat are discussed at length. The final task challenges the students to use all of the information from earlier in the lesson to write a detailed description of how the body detects and responds to a decrease in temperature. This lesson has been written for students studying on the Edexcel GCSE Biology course but is also suitable for older students who are studying thermoregulation and need to recall the key details.
Temperature control in ECTOTHERMS (OCR A-level Biology A)
GJHeducationGJHeducation

Temperature control in ECTOTHERMS (OCR A-level Biology A)

(1)
This concise lesson has been written to cover specification point 5.1.1 (d) of the OCR A-level Biology A specification which states that students should be able to apply an understanding of the behavioural responses in temperature control in ectotherms. The main aim when designing the lesson was to support students in making sensible and accurate decisions when challenged to explain why these types of organisms have chosen to carry out a particular response. A wide range of animals are used so students are engaged in the content matter and are prepared for the unfamiliar situations that they will encounter in the final exam. Time is also taken to compare ectotherms against endotherms so that students can recognise the advantages and disadvantages of ectothermy. This lesson has been written for A-level students studying on the OCR A-level Biology A course. Lessons on temperature control in endotherms and the principles of homeostasis and cell signalling, which are also in module 5.1.1, are also available so please download those too as they will allow students to make connections between one lesson, the previous and the next.
The principles of HOMEOSTASIS (OCR A level Biology A)
GJHeducationGJHeducation

The principles of HOMEOSTASIS (OCR A level Biology A)

(2)
This lesson describes the principles of homeostasis and the differences between negative feedback and positive feedback. The PowerPoint and accompanying resources have been designed to cover point 5.1.1 [c] of the OCR A-level Biology A specification and explains how this feedback control maintains systems within narrow limits but has also been planned to provide important details for upcoming topics such as osmoregulation, thermoregulation and the depolarisation of a neurone. The normal ranges for blood glucose concentration, blood pH and body temperature are introduced at the start of the lesson to allow students to recognise that these aspects have to be maintained within narrow limits. A series of exam-style questions then challenge their recall of knowledge from topics 1-8 to explain why it’s important that each of these aspects is maintained within these limits. The students were introduced to homeostasis at GCSE, so this process is revisited and discussed, to ensure that students are able to recall that this is the maintenance of a state of dynamic equilibrium. A quick quiz competition is used to reveal negative feedback as a key term and students will learn how this form of control reverses the original change and biological examples are used to emphasise the importance of this system for restoring levels to the limits (and the optimum). The remainder of the lesson explains how positive feedback differs from negative feedback as it increases the original change and the role of oxytocin in birth and the movement of sodium ions into a neurone are used to exemplify the action of this control system.
The causes and control of diabetes type I and II (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

The causes and control of diabetes type I and II (Edexcel GCSE Biology & Combined Science)

(0)
This is a fully-resourced lesson consisting of an engaging PowerPoint and differentiated worksheets which have been designed to cover the content of points 7.15 & 7.16 as detailed on the Edexcel GCSE Biology & Combined Science specifications. This point states that students should be able to describe the cause of diabetes type I and II and describe how they are both controlled. There are links made throughout the lesson between this topic and the control of blood glucose concentration from specification point 7,13 and 7.14 The lesson has been designed to take the format of a diabetic clinic where the students perform the duties of the attending doctor. They will move through the different expectations of the role which includes identifying symptoms, diagnosis of type I or II and communication with the patients to reveal the findings. The wide range of activities will enable the students to learn how to spot that someone is suffering from diabetes and the similarities and differences between the different types so they can determine which one is being presented. The summary tasks challenge the students to construct a letter to a patient who is suffering from type II and to identify the correct type from another doctor’s letter. Understanding and previous knowledge checks are interspersed with quiz competitions, like the one shown in the cover image, which make the learning fun and memorable and enable the students to assess their progress. This lesson has been designed for students studying the Edexcel GCSE Biology or Combined Science course but is suitable for both younger and older students who are focusing on this disease
Topic 2.5: Response and regulation (WJEC GCSE Biology)
GJHeducationGJHeducation

Topic 2.5: Response and regulation (WJEC GCSE Biology)

8 Resources
All of the 8 lessons which are included in this bundle have been designed to engage and motivate the students whilst ensuring that the content of topic 2.5 (Response and regulation) of the WJEC GCSE Biology specification is covered in detail. They have been written to contain a wide range of activities which include understanding and prior knowledge checks to allow students to assess their progress as well as quick tasks and quiz competitions so key terms and values can be introduced in a fun and memorable way.
The structure and function of the EYE (WJEC GCSE Biology)
GJHeducationGJHeducation

The structure and function of the EYE (WJEC GCSE Biology)

(0)
This engaging and detailed resource, which contains a PowerPoint and accompanying worksheets, has been designed to cover the content of point 2.5 (e) of the WJEC GCSE Biology specification that states that students should know the structure and functions of the following 9 parts of the eye: sclera cornea pupil iris lens choroid retina blind spot optic nerve The lesson was designed to include a wide range of activities to engage and motivate the students so that the knowledge is more likely to stick. These activities include Have you got an EYE for the IMPOSSIBLE, as shown in the cover image, where students have to pick out the 8 structures of the human eye from the list and avoid the IMPOSSIBLE answer. There is also a particular focus on the light-sensitive cells in the retina, the pupil reflex and the change in the shape of the lens to accommodate near and distant objects. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for both older and younger students who may be studying the eye.
HORMONES as chemical messengers (WJEC GCSE Biology)
GJHeducationGJHeducation

HORMONES as chemical messengers (WJEC GCSE Biology)

(0)
This lesson has been designed to cover the content set out in specification point 2.5 (g) of the WJEC GCSE Biology specification which states that students should understand that hormones are chemical messengers which control many body functions. A wide range of activities have been written into the lesson with the aim of engaging and motivating the students whilst ensuring that the content is covered in detail. These activities include a number of quiz competitions which will challenge the students to identify an endocrine organ when presented with three organs as well as introducing them to the names of some of the hormones released by the pituitary gland. The following content is covered in this lesson: The location of the pituitary, adrenal and thyroid glands in the human body The location of the pancreas, ovaries and testes in the human body The hormones which are secreted by the endocrine glands The effects of the hormones on their target organs This lesson has been written for GCSE-aged students who are studying on the WJEC Biology course but it is suitable for younger students who are looking at this as one of the different organ systems
The control of BLOOD GLUCOSE (WJEC GCSE Biology)
GJHeducationGJHeducation

The control of BLOOD GLUCOSE (WJEC GCSE Biology)

(0)
This concise lesson presentation and accompanying worksheet have been designed to cover the content of point 2.5 (h) of the WJEC GCSE Biology specification which states that students should understand the need to keep blood glucose levels within a constant range. Homeostasis is a running theme throughout the 2.5 topic so this lesson builds on knowledge from earlier topics to ensure that there is a deep understanding. The lesson begins by introducing glucose and a quiz competition will lead to the range 4 - 7, so that students can recognise that this is the set range within which this molecule’s concentration must be kept. Time is taken to look at some of the health problems that are associated with an increase in concentration above this upper limit and the general Biological knowledge of the students is tested with some questions. Moving forwards, the main task of the lesson involves a step by step guide through the stages in the response to a high blood glucose concentration and shows the students how the release of insulin leads to the uptake of glucose from the blood and a conversion to glycogen by the liver and muscle cells. The summary task at the end challenges the students to bring all of the information together to write a detailed description of this response and this activity is differentiated to aid those students who need extra assistance. This lesson has been designed for students studying the WJEC GCSE Biology course but could be used with A-level students who are beginning this topic and need to recall the key details.
Temperature regulation (WJEC GCSE Biology)
GJHeducationGJHeducation

Temperature regulation (WJEC GCSE Biology)

(0)
The engaging Powerpoint and accompanying worksheet which come as part of this lesson resource have been designed to cover specification point 2.5 (k) as detailed in the WJEC GCSE Biology specification which states that students should understand the roles of the effectors in temperature regulation. A wide range of activities which include Biology and Maths tasks and quiz competitions are interspersed with understanding and prior knowledge checks so that students are engaged and motivated whilst learning the key content in a memorable way and checking their progress. Students will learn that the body temperature is maintained at 37 degrees celsius by a homeostatic control system called thermoregulation and will be challenged to recall the topic of enzymes to explain why this is so important. Time is taken to look at the responses brought about the effectors such as vasodilation and shivering and links are made to the structures of the skin such as the involvement of the erector muscles. Students will recognise how these mechanisms lead a decrease or increase in body temperature back to the set point. Links are also made between the Sciences so that there is a deeper understanding of exactly why sweating cools the body down. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for older students who are studying Biology at A-level and need to recall the key details of thermoregulation.
Homeostasis (WJEC GCSE Biology)
GJHeducationGJHeducation

Homeostasis (WJEC GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content found in specification point 2.5 (f) of the WJEC GCSE Biology specification which states that students should understand why animals need to regulate the conditions inside their bodies. This resource contains an engaging and detailed PowerPoint (45 slides) and accompanying worksheets The lesson begins by challenging the student’s literacy skills as they are asked to recognise the key term, optimum, from 6 of its’ synonyms. Moving forwards, a range of quiz competitions are used to introduce the term homeostasis and to provide a definition for this key process. Students are given a newspaper article about water and blood glucose so they can recognise 2 conditions which are controlled in the human body. The next part of the lesson looks at the importance of maintaining the levels of water and glucose by considering the medical problems that could arise if they move away from the optimum levels. Students will learn that body temperature is also controlled and links are made to earlier knowledge as they have to explain why an increase in temperature above the set point would be an issue because of the denaturation of enzymes. The rest of the lesson looks at the three parts that are included in all control systems before a final quiz round introduces the receptors, coordination centre and effectors in the control of body temperature. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the WJEC GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the process in more detail
The causes and treatments of DIABETES (WJEC GCSE Biology)
GJHeducationGJHeducation

The causes and treatments of DIABETES (WJEC GCSE Biology)

(0)
This is a fully-resourced lesson consisting of an engaging PowerPoint and differentiated worksheets which have been designed to cover the content of point 2.5 (i) as detailed on the WJEC GCSE Biology specification. This point states that students should demonstrate and apply their knowledge and understanding of how type I and II diabetes are caused and their respective treatments. There are links made throughout the lesson between this topic and the control of blood glucose concentration from specification point 2.5 (h). The lesson has been designed to take the format of a diabetic clinic where the students perform the duties of the attending doctor. They will move through the different stages of the role which includes identifying symptoms, diagnosis of type I or II and communication with the patients to reveal the findings. The wide range of activities will enable the students to learn how to spot that someone is suffering from diabetes and the similarities and differences between the different types so they can determine which one is being presented. The summary tasks challenge the students to construct a letter to a patient who is suffering from type II and to identify the correct type from another doctor’s letter. Understanding and previous knowledge checks are interspersed with quiz competitions, like the one shown in the cover image, which make the learning fun and memorable and enable the students to assess their progress. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for both younger and older students who are focusing on this disease
The components of a REFLEX ARC (WJEC GCSE Biology)
GJHeducationGJHeducation

The components of a REFLEX ARC (WJEC GCSE Biology)

(0)
This lesson resource contains a engaging PowerPoint and accompanying worksheets, all of which have been designed to cover the content of specification point 2.5 (d) on the WJEC GCSE Biology specification. This specification point states that students should know the components of a reflex arc. This lesson builds on the knowledge from the previous lesson on the structure and function of the nervous system (2.5b). The lesson begins by challenging the students to come up with the word reflex having been presented with 5 other synonyms of the word automatic. This leads into a section of discovery and discussion where students are encouraged to consider how a reflex arc can be automatic and rapid despite the fact that the impulse is conducted into the CNS like any other reaction. Students will be introduced to the relay neurone and will learn how this provides a communication between the sensory neurone and the motor neurone and therefore means that these arcs do not involve processing by the brain. Moving forwards, the main task of the lesson challenges the students to write a detailed description of a reflex arc. Assistance is given on the critical section which involves the relay neurone in the spinal cord before they have to use their knowledge of nervous reactions to write a paragraph before and after to complete the description. As a final task, students will have to compare the structure and functions of sensory, motor and relay neurones. Although this lesson has been designed for students studying on WJEC GCSE Biology course, it is also suitable for older students who are studying reflex reactions at A-level and need to recall the main details.