Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1245k+Views

2048k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic B1: Cell-level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B1: Cell-level systems (OCR Gateway A GCSE Biology)

9 Resources
This bundle of 10 lessons covers the majority of the content in Topic B1 (Cell-level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: Plant and animal cells Bacterial cells Light microscopy Electron microscopy DNA Transcription and translation Enzymes Enzyme actions Aerobic respiration Anaerobic respiration Photosynthesis Limiting factors All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
IVF
GJHeducationGJHeducation

IVF

(1)
This is a fully-resourced lesson which looks at how IVF is used a treatment for infertility and considers the arguments for and against this process. The lesson includes an engaging, informative and discussion provoking lesson presentation and a pair of differentiated worksheets which challenge the mathematical skills of the students when looking at the % chance of multiple births from IVF. The lesson begins by getting the students to recognise the phrase “test tube baby” and then to link this to IVF. Extra pieces of interesting information are given throughout the lesson, such as the introduction of Louise Brown at this point. A step by step guide is used to go through the key steps in the process. Questions are continually posed to the students which get them to think and attempt to verbalise their answers such as when they are questioned whether men are needed for this process. There is a focus on key terminology throughout, such as haploid and zygote and genetic screening. Students will learn that multiple births are much more common in IVF births than from natural conception and then they will be asked to manipulate data in a mathematical task with some figures from a maternity ward. As these questions are quite difficult, this worksheet has been differentiated so that all students can access the learning. Although this has been written for GCSE students, it is suitable for use with older students.
Epistasis (OCR A-level Biology)
GJHeducationGJHeducation

Epistasis (OCR A-level Biology)

(1)
This fully-resourced lesson explores how the presence of particular alleles at one locus can mask the expression of alleles at a second locus in epistasis. The detailed and engaging PowerPoint and associated resources have been designed to cover the part of point 6.1.2 (b[ii]) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the use of phenotypic ratios to identify epistasis. This is a topic which students tend to find difficult, and therefore the lesson was written to split the topic into small chunks where examples of dominant, recessive and complimentary epistasis are considered, discussed at length and then explained. Understanding checks, in various forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. There are regular links to related topics such as dihybrid inheritance so that students can meet the challenge of interpreting genotypes as well as recognising the different types of epistasis.
The Human Endocrine system
GJHeducationGJHeducation

The Human Endocrine system

(1)
An engaging lesson presentation which looks at the organs of the human endocrine system, the hormones they release and briefly considers some of their functions. This lesson has been designed for GCSE students but could be used with younger students at KS3 who are studying the different organ systems in the human body. The lesson begins by looking at the meaning of endo and crine so that students recognise that this is also known as the hormonal system and the hormones are always released directly into the blood. A number of quick competitions have been written into the lesson to maintain engagement and provide opportunities to check understanding in an alternative way to simple questions. This first of these games is called “Any sign of the ENDOCRINE”, where students are challenged to pick the endocrine gland out of a selection of three and then come to board to point to where it would be found on a body outline. The students have to label the diagram on the worksheet included in this lesson and then allocate hormones to 5 of the 6 glands. Time is taken to focus on the pituitary gland and three of the hormones that it releases in FSH, LH and TSH because these relate to the menstrual cycle and the thyroid gland. The final part of the lesson involves students being shown an acronym, HBGT, that they can use in longer answers to ensure that they mention the hormone, blood, the gland that releases the hormone and the target tissue.
Selective breeding
GJHeducationGJHeducation

Selective breeding

(1)
This is a fast-paced lesson which goes through the main steps of selective breeding and looks at the potential risks of this process. The lesson begins by looking at the characteristics of a number of organisms that would be selected. Time is taken to ensure that students understand that selective breeding is not a new thing and has been going on for a very long time and therefore some of the problems associated with this are now being experienced. The actual process is reduced down into 5 steps which can be recalled and applied to questions. The remainder of the lesson looks at the potential issues with selective breeding. The reduction in the nose size of pugs is explored as an example of the health problems which bred animals may face. This lesson has been written for GCSE students.
Chi-squared test (OCR A-level Biology)
GJHeducationGJHeducation

Chi-squared test (OCR A-level Biology)

(1)
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated worksheets that have been designed to cover point 6.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the test to compare the observed and expected results of a genetic cross The lesson has been written to include a step-by-step guide that demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty.
OSMOREGULATION (AQA A-level Biology)
GJHeducationGJHeducation

OSMOREGULATION (AQA A-level Biology)

(1)
This is a highly-detailed and fully-resourced lesson which covers the part of specification point 6.4.3 of the AQA A-level Biology specification which states that students should be able to describe the roles of the hypothalamus, posterior pituitary and ADH in osmoregulation. Students learnt about the principles of homeostasis and negative feedback in an earlier lesson, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work. This lesson has been written for students studying on the AQA A-level Biology course and ties in nicely with the other uploaded lessons which cover this specification point as well as the whole of topic 6.
Genetic drift (AQA A-level Biology)
GJHeducationGJHeducation

Genetic drift (AQA A-level Biology)

(1)
This engaging and fully-resourced lesson looks at how genetic drift can arise after a genetic bottleneck or as a result of the Founder effect. The detailed PowerPoint and accompanying resources have been designed to cover the fourth part of point 7.3 of the AQA A-level Biology specification which states that students should be able to explain the importance of genetic drift in causing changes in allele frequency in small populations A wide range of examples are used to show the students how a population that descends from a small number of parents will have a reduction in genetic variation and a change in the frequency of existing alleles. Students are encouraged to discuss new information to consider key points and understanding checks in a range of forms are used to enable them to check their progress and address any misconceptions. Students are provided with three articles on Huntington’s disease in South Africa, the Caribbean lizards and the plains bison to understand how either a sharp reduction in numbers of a new population beginning from a handful of individuals results in a small gene pool. Links to related topics are made throughout the lesson to ensure that a deep understanding is gained.
Topic 7.3: Evolution may lead to speciation (AQA A-level Biology)
GJHeducationGJHeducation

Topic 7.3: Evolution may lead to speciation (AQA A-level Biology)

4 Resources
Each of the 4 lessons included in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 7.3 (Evolution may lead to speciation) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: Phenotypic variation within a species The effects of stabilising, directional and disruptive selection The importance of genetic drift in causing changes in allele frequency Allopatric and sympatric speciation The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this module and earlier modules If you would like to see the quality of the lessons, download the phenotypic variation lesson which is free
Control of heart rate (AQA A-level Biology)
GJHeducationGJHeducation

Control of heart rate (AQA A-level Biology)

(1)
This fully-resourced lesson looks at the coordination and control of heart rate by the cardiovascular centre in the medulla oblongata. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the second part of point 6.1.3 of the AQA A-level Biology specification which states that students should know the roles and locations of the sensory receptors and the roles of the autonomic nervous system and effectors in the control of heart rate. This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work This lesson has been written to tie in with the previous lesson on the conducting system of the heart which is also detailed in specification point 6.1.3
Oxidative phosphorylation (Edexcel A-level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (Edexcel A-level Biology)

(1)
This detailed, concise lesson describes and explains how the electron transport chain and chemiosmosis are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover point 7.6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and also looks at the role of the enzyme, ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration.
Genetic diversity (AQA A-level Biology)
GJHeducationGJHeducation

Genetic diversity (AQA A-level Biology)

(1)
This fully-resourced lesson describes genetic diversity as the number of genes in a population and explains how this is increased by polymorphic gene loci. The engaging PowerPoint and accompanying differentiated resources have been primarily designed to cover the first part of point 4.4 of the AQA A-level Biology specification but also introduces inheritance and codominance so that students are prepared for these sub-topics when covering topic 7 in the following year. In order to understand that 2 or more alleles can be found at a gene loci, students need to be confident with genetic terminology, so the start of the lesson focuses on key terms including gene, locus, allele, recessive, genotype and phenotype. A number of these will have been met at GCSE, as well as during the earlier lessons in topic 4 when considering meiosis, so a quick quiz competition is used to check on their recall of the meanings of these terms. The CFTR gene is then used as an example to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). At this point, the students are introduced to codominance and again they are challenged to apply their understanding to a new situation by working out the number of phenotypes in the inheritance of blood groups. The lesson concludes with a brief consideration of the HLA gene loci, which is the most polymorphic loci in the human genome, and students are challenged to consider how this sheer number of alleles can affect the chances of tissue matches in organ transplantation.
Polypeptides & protein structure (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Polypeptides & protein structure (Edexcel Int. A-level Biology)

(1)
This lesson describes how the primary structure determines the secondary structure, 3D structure and properties of a protein. The detailed and engaging PowerPoint and accompanying resources have been designed to cover points 2.6 (ii) & (iii) of the Edexcel International A-level Biology specification but also makes specific reference to genes and protein synthesis and therefore introduces students to processes covered later in topic 2. The start of the lesson focuses on the formation of a peptide bond during a condensation reaction so that students can understand how a dipeptide is formed and therefore how a polypeptide forms when multiple reactions occur. The main part of the lesson describes the different levels of protein structure. A step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. The lesson concludes with one final task where the students have to identify three errors in a passage about the hydrolysis of a dipeptide or polypeptide.
Edexcel Int. A-level Biology Topic 2: Membranes, Proteins, DNA and Gene expression
GJHeducationGJHeducation

Edexcel Int. A-level Biology Topic 2: Membranes, Proteins, DNA and Gene expression

20 Resources
Hours and hours of planning have gone into each and every lesson that’s included in this bundle to ensure that the students are engaged and motivated whilst the detailed content of topic 2 of the Edexcel International A-level Biology specification is covered. Membranes, proteins, DNA and gene expression represent some of the most important structures, molecules and processes involved in this subject and a deep understanding of their role in living organisms is important for a student’s success. The 20 lesson PowerPoints and accompanying resources contain a wide range of activities which cover the following topic 2 specification points: Know the properties of gas exchange surfaces in living organisms Understand how the rate of diffusion can be calculated using Fick’s Law of Diffusion Understand how the structure of the mammalian lung is adapted for rapid gas exchange The structure and properties of cell membranes The movement of free water molecules by osmosis The movement across membranes by passive and active transport The role of channel and carrier proteins in membrane transport The basic structure of an amino acid The formation of polypeptides and proteins The structure of proteins The mechanism of action and specificity of enzymes Enzymes are biological catalysts Intracellular and extracellular enzymes The basic structure of mononucleotides The structure of DNA and RNA The process of DNA replication The nature of the genetic code A gene as a sequence of bases on DNA that codes for a sequence of amino acids The process of transcription and translation Errors in DNA replication give rise to mutations Mutations give rise to disorders but many mutations have no observable effect The meaning of key genetic terms Understanding the pattern of monohybrid inheritance Sex linkage on the X chromosome Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems The uses and implications of genetic screening and prenatal testing Due to the detail included in all of these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete the teaching of the bundle If you would like to sample the quality of these lessons, then download the rapid gas exchange, osmosis, DNA & RNA, genetic code, genetic terms and cystic fibrosis lessons as these have been uploaded for free.
Evolution, natural selection & adaptations (Edexcel A level Biology B)
GJHeducationGJHeducation

Evolution, natural selection & adaptations (Edexcel A level Biology B)

(1)
This fully-resourced lesson describes how evolution can come through natural selection and acts on variation to bring about adaptations. The PowerPoint and accompanying resources have been designed to cover specification points 3.2 (i) & (ii) of the Edexcel A-level Biology B specification and considers a range of different behavioural, anatomical and physiological adaptations. President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. The final part of the lesson focuses on the adaptations of the anteater and links are made to the topic of classification hierarchy which was covered at the start of topic 3… Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
Active & co-transport (AQA A-level Biology)
GJHeducationGJHeducation

Active & co-transport (AQA A-level Biology)

(1)
This lesson describes how the role of carrier of proteins and ATP in active transport and the co-transport of sodium ions and glucose in the ileum. The PowerPoint and accompanying resources are part of the final lesson in a series of 3 that have been designed to cover the details of point 2.3 of the AQA A-level Biology specification and also includes descriptions of endocytosis and exocytosis The start of the lesson focuses on the structure of this energy currency and challenges the students prior knowledge as they covered ATP in topic 1.6. As a result, they will recall that this molecule consists of adenine, ribose and three phosphate groups and that in order to release the stored energy, ATP must be hydrolysed. Time is taken to emphasise the key point that the hydrolysis of ATP can be coupled to energy-requiring reactions and this leads into a series of exam-style questions where students are challenged on their knowledge of simple and facilitated diffusion to recognise that ATP is needed for active transport. These questions also challenge them to compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The students are then shown how exocytosis is involved in a synapse and in the release of ADH from the pituitary gland during osmoregulation which they will cover in later topics. The final part of the lesson describes the movement of sodium ions and glucose from the ileum to the epithelial cells to the blood using a range of proteins which includes cotransporter proteins and students will learn that similar mechanisms are seen in the phloem and in the proximal convoluted tubule.
Structure of a chromosome (CIE A-level Biology)
GJHeducationGJHeducation

Structure of a chromosome (CIE A-level Biology)

(1)
This lesson describes the structure of the chromosome, including DNA, histone proteins, chromatids, centromeres and telomeres. The PowerPoint and accompanying worksheets have been primarily designed to cover point 5.1 (a) of the CIE A-level Biology specification but has been specifically planned to provides links to the upcoming topics of the cell cycle, mitosis, meiosis and DNA replication. The lesson begins with a prior knowledge check, where the students have to recall why the DNA in prokaryotic cells is described as being naked. This re-introduces histone proteins, and then time is taken to describe that the wrapping of DNA molecules around these proteins forms the linear chromosomes in the nucleus of eukaryotic cells. A series of 7 exam-style questions are used throughout the lesson and challenge the students to apply their knowledge and understanding to unfamiliar situations and challenge their knowledge of topics 1 and 2 (cell structure and biological molecules). The mark schemes for all of these questions are embedded into the PowerPoint to allow the students to assess their progress. Moving forwards, a quiz competition is used to introduce the terms diploid, chromatid and centromere and the S phase of interphase in a fun and memorable way. Students will learn that the duplication of chromosomes results in pairs of identical sister chromatids that are joined by a centromere. The importance of the splitting of the centromere in mitosis is explained and then the students are challenged to explain why the non-sister chromatids are involved in crossing over, when variation is needed. The final part of the lesson considers the repetitive nucleotide sequences found on the end of chromosomes that are known as telomeres and students will gain an initial understanding about their structure so they are prepared for the upcoming lesson on their significance
The role of haemoglobin (CIE International A-level Biology)
GJHeducationGJHeducation

The role of haemoglobin (CIE International A-level Biology)

(1)
This engaging lesson looks at the role of haemoglobin in carrying oxygen and carbon dioxide. The PowerPoint has been designed to cover point 8.1 (f) of the CIE International A-level Biology specification and includes references to the role of carbonic anhydrase and the formation of haemoglobinic acid and carbaminohaemoglobin. The lesson begins with a version of the quiz show Pointless to introduce haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure and are challenged to use their prior knowledge of biological molecules to determine what this means for the protein. They will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. The remainder of the lesson looks at the different ways that carbon dioxide is transported around the body that involve haemoglobin. Time is taken to look at the dissociation of carbonic acid into hydrogen ions so that students can understand how this will affect the affinity of haemoglobin for oxygen in an upcoming lesson on the Bohr effect.
Gross structure of the human heart (AQA A-level Biology)
GJHeducationGJHeducation

Gross structure of the human heart (AQA A-level Biology)

(1)
This fully-resourced lesson looks at the structures that make up the gross anatomy of the heart and also covers the calculation of cardiac ouput. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the 4th part of point 3.4.1 of the AQA A-level Biology specification which states that students should be able to describe the gross structure of the human heart and be able to use the equation stroke volume x heart rate to calculate cardiac output. As this topic was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 3.4.1 such as blood circulation and the cardiac cycle. Moving forwards, the students are introduced to the stroke volume and meet normative values for this and for resting heart rate. This will lead into the calculation for cardiac output and a series of questions are used to test their ability to apply this equation as well as percentage change.
Glycogen, starch & cellulose (Edexcel A-level Biology B)
GJHeducationGJHeducation

Glycogen, starch & cellulose (Edexcel A-level Biology B)

(1)
This detailed and fully-resourced lesson describes the relationship between the structure and function of the polysaccharides: glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover point 1.1 (iv) as it is detailed in the Edexcel A-level Biology B specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. By the end of this lesson, students should understand how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also whether it spirals or not. A range of activities are used to motivate and engage the students as they discover that glycogen is stored in liver and muscle cells, which it is able to do because of its compact structure. They are encouraged to discuss why the branched structure of this polysaccharide means that it can act as an immediate source of energy and they will recognise that hydrolysis reactions at the multiple ends of this chain will release glucose. Following on from the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses once they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. In the final part of the lesson, time is taken to focus on the formation of cellulose microfibrils and macrofibrils to explain how plant cells have the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete