Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1937k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Conducting tissue of the heart (AQA A-level Biology)
GJHeducationGJHeducation

Conducting tissue of the heart (AQA A-level Biology)

(0)
This engaging lesson explores the roles of the SAN, AVN, Bundle of His and Purkyne fibres in the transmission of the wave of excitation through the heart. The PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.3 of the AQA A-level Biology specification which states that students should be able to describe the myogenic stimulation of the heart and the subsequent wave of electrical activity. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 3. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)
GJHeducationGJHeducation

The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)

(0)
This engaging and fully-resourced lesson covers the content of specification points 5.1.4 (e and f) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the differences between diabetes mellitus type I and II and the potential treatments of this disease. The lesson has been designed to take place in a diabetes clinic where students will be challenged to perform a number of roles such as diagnosing a patient with either type I or II and to write a letter to this patient explaining how the disease was caused and any treatments that will be recommended to control the disease. It has been planned to build on the knowledge that they will have of these diseases from GCSE and links are made to other A-level topics such as the beta cells of the pancreas which they considered during the lesson on the control of blood glucose concentration. The final part of the lesson looks at the potential treatments which include the genetic modification of bacteria. This topic is covered in greater detail in module 6.1.3 so this section of the lesson focuses on the enzymes involved as well as the plasmid DNA from a bacterial cell. This lesson has been designed for students studying the OCR A-level Biology A course and runs alongside the uploaded lesson on the control of blood glucose concentration as well as the other lessons that have been added for module 5.1.4
Genetic variation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Genetic variation (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how mutations, the events of meiosis and random fertilisation result in genetic variation. The engaging PowerPoint and accompanying resources have been primarily designed to cover points 8.1 (i) & (ii) of the Edexcel A-level Biology B specification but also includes activities to challenge the students on previous concepts in topics 1 and 2. The students begin the lesson by having to identify phenotype and species from their respective definitions so that a discussion can be encouraged where they will recognise that phenotypic variation within a species is due to both genetic and environmental factors although this lesson only focuses on the genetic aspect. A range of activities, which include exam-style questions and quick quiz rounds, are used to challenge the students on their knowledge and understanding of substitution mutations, deletions, insertions, the genetic code, crossing over and independent assortment. Moving forwards, the concept of multiple alleles is introduced and students will learn how the presence of more than 2 alleles at a locus increases the number of phenotypic variants. The final section of the lesson focuses on the production of haploid gametes by meiosis and discusses how the random fertilisation of these gametes during sexual reproduction further increases variation.
Genetic terms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Genetic terms (Edexcel A-level Biology B)

(0)
This fully-resourced lesson has been written to support students to develop a clear understanding of 16 key genetic terms, including the 8 that are detailed in specification point 8.2 (i) of the Edexcel A-level Biology B specification. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and to act as an understanding check.
Structure of mRNA & tRNA (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of mRNA & tRNA (Edexcel A-level Biology B)

(0)
This lesson describes the structure of messenger and transfer RNA and compares this against the structure of DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover points 1.4 (iv) and (v) as detailed in the Edexcel A-level Biology B specification which states that students should be able to describe the structure of the two forms of this nucleic acid. Students were introduced to the detailed structure of a nucleotide and DNA in the first lesson of topic 1.4, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as the understanding of the current topic. The lesson begins with the introduction of RNA as a member of the family of nucleic acids and this enables students to recognise that this polynuclotide shares a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis
Structure of an amino acid (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of an amino acid (Edexcel A-level Biology B)

(0)
This engaging lesson acts as an introduction to topic 1.3 (proteins) by introducing the general structure of an amino acid. The PowerPoint lesson has been designed to cover point 1.3 (i) as detailed in the Edexcel A-level Biology B specification and provides a clear introduction to the following lesson on the formation of polypeptides, protein structures and globular and fibrous proteins. The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference, before cysteine is considered in greater detail due to the presence of sulfur atoms. Students are briefly introduced to disulfide bridges so they will recognise how particular bonds form between the R groups in the tertiary structure which is covered in the next lesson. One more quiz round called LINK TO THE FUTURE is used to conclude the lesson and demonstrates the range of roles performed by amino acids in the latter part of the course including translation at the ribosomes.
Glycolysis (AQA A-level Biology)
GJHeducationGJHeducation

Glycolysis (AQA A-level Biology)

(0)
This fully-resourced lesson looks at the details of glycolysis as the first stage of aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover the second part of point 5.2 of the AQA A-level Biology specification which states that students should know glycolysis as the phosphorylation of glucose and the production and subsequent oxidation of triose phosphate. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. This lesson has been written to tie in with the other uploaded lessons on anaerobic respiration and the different stages of aerobic respiration (the Link reaction, Krebs cycle and oxidative phosphorylation)
Structure & functions of phospholipids (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure & functions of phospholipids (Edexcel A-level Biology B)

(0)
This engaging lesson describes how the structure and properties of phospholipids relate to their functions in cell membranes. The PowerPoint has been designed to cover point 1.2 (iv) as detailed in the Edexcel A-level Biology B specification and includes regular references to the previous lesson on triglycerides to check on knowledge and understanding The role of a phospholipid in a cell membrane provides the backbone to the whole lesson. A quick quiz round called family affair, challenges the students to use their knowledge of the structure of a triglyceride to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lessons in topic 4 on the fluid mosaic model. The final part of the lesson explains how both facilitated diffusion and active transport mean that proteins are found floating in the cell membrane and this also helps to briefly prepare the students for upcoming topic 4 lessons.
Inheritance of two genes (Edexcel A-level Biology B)
GJHeducationGJHeducation

Inheritance of two genes (Edexcel A-level Biology B)

(0)
This lesson describes the inheritance of two non-interacting unlinked genes and guides students through the calculation of phenotypic ratios. The PowerPoint and the accompanying question sheet (which is differentiated) have been designed to cover point 8.2 (iii) of the Edexcel A-level Biology B specification. As the previous lesson described the construction of genetic crosses and pedigree diagrams, students are aware of the methods involved in writing genotypes and gametes for the inheritance of a single gene. Therefore, the start of this lesson builds on this understanding to ensure that students recognise that genotypes contain 4 alleles and gametes contain 2 alleles when two genes are inherited. The students are taken through the steps of a worked example to demonstrate the key steps in the calculation of a phenotypic ratio before 2 exam-style questions challenge them to apply their newly-acquired knowledge. Mark schemes are displayed within the PowerPoint to allow students to assess their progress. The phenotypic ratio generated as the answer to the final question is 9:3:3:1 and time is taken to explain that this is the expected ratio when two heterozygotes for two genes are crossed which they may be expected to use when meeting the chi squared test in an upcoming lesson
Rates of reaction
GJHeducationGJHeducation

Rates of reaction

(0)
A fully-resourced lesson which looks at the meaning of the rate of reaction and guides students through calculating both the mean and instantaneous rate of reaction. The lesson includes a concise lesson presentation (19 slides) and a question worksheet which is differentiated two ways. The lesson begins by challenging the students to suggest the missing factor in the rate of reaction equation so they can learn that either the mass of a reactant or a mass of a product could be used. Links are made to practical skills as students will understand that if a product is in the gaseous form, the volume produced within a set time will enable the rate to be calculated. Worked examples are used to show the students how to calculate the mean rate of reaction and then the instantaneous using a tangent. The rest of the lesson involves collecting data from an experiment to calculate the rate of reaction. The questions associated with the practical have been differentiated so students who need assistance can still access the learning. This lesson has been written for GCSE students
Temperature & enzyme activity (Edexcel A-level Biology B)
GJHeducationGJHeducation

Temperature & enzyme activity (Edexcel A-level Biology B)

(0)
This lesson describes and explains how temperature affects enzyme activity. The PowerPoint and the accompanying resource are part of the 1st lesson in a series of 3 which cover the content detailed in point 1.5 (iv) of the Edexcel A-level Biology B specification and this lesson has been specifically planned to tie in with the previous lesson covering 1.5 (i, ii & iii) where the structure, properties and mechanism of action of enzymes were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in topics 7 and 5. Moving forwards, the rest of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of enzyme activity in a reaction and not the practical skills that would be covered in a core practical lesson
Ectotherms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Ectotherms (Edexcel A-level Biology B)

(0)
This lesson introduces the differences between ectotherms and endotherms and then describes the behavioural responses of an ecotherm. The PowerPoint and accompanying resource have been designed to cover specification point 9.9 (vi) of the Edexcel A-level Biology B specification which states that students should understand how ectotherms rely on the external environment for their temperature control. The main aim when designing the lesson was to support students in making sensible and accurate decisions when challenged to explain why these types of organisms have chosen to carry out a particular response. A wide range of animals are used so students are engaged in the content matter and are prepared for the unfamiliar situations that they will encounter in the terminal exam. Time is also taken to compare ectotherms against endotherms so that students can recognise the advantages and disadvantages of ectothermy when covered in the following lesson.
The genetic code (AQA A-level Biology)
GJHeducationGJHeducation

The genetic code (AQA A-level Biology)

(0)
This lesson focuses on the degenerate nature of the genetic code and explains how a mutation may not result in a change to the sequence of amino acids. The PowerPoint has been designed to cover the first part of point 4.3 of the AQA A-level Biology specification and it makes links to the upcoming lesson on gene mutations. The lesson begins by introducing the terms near universal and non-overlapping in addition to degenerate. A quick quiz competition is used to generate the number 20 so that the students can learn that there are 20 proteinogenic amino acids in the genetic code. This leads into a challenge, where they have to use their prior knowledge of DNA to calculate the number of different DNA triplets (64) and the mismatch in number is then discussed and related back to the lesson topic. Moving forwards, base substitutions and base deletions are briefly introduced so that they can see how although one substitution can change the primary structure, another will change the codon but not the encoded amino acid. The lesson concludes with a brief look at the non-overlapping nature of the code so that the impact of a base deletion (or insertion) can be understood when covered in greater detail in topic 8. This lesson has been specifically designed to tie in with the other lessons from topic 4.3 on gene mutations, chromosome mutations and meiosis.
Respiratory substrates (AQA A-level Biology)
GJHeducationGJHeducation

Respiratory substrates (AQA A-level Biology)

(0)
This fully-resourced lesson explores how other respiratory substrates, such as lipids and proteins, can be used to produce molecules of ATP. The PowerPoint and accompanying resources have been designed to cover the 7th and final part of point 5.2 of the AQA A-level Biology specification which states that students should know how these substrates enter the Krebs cycle. This lesson has been written to challenge the knowledge of the earlier parts of the topic of respiration and so contains constant prior knowledge checks which come in a range of forms. Students will learn that lipids and proteins can be used as respiratory substrates and will recognise the different ways that they enter the respiratory pathway. Time is taken to look at the beta oxidation pathway and again students are challenged to compare the products of this pathway against that of the Link reaction.
Synthesis & breakdown of disaccharides (Edexcel A-level Biology B)
GJHeducationGJHeducation

Synthesis & breakdown of disaccharides (Edexcel A-level Biology B)

(0)
This lesson describes how maltose, sucrose and lactose are synthesised during condensation reactions and broken down during hydrolysis reactions. The PowerPoint and accompanying question sheet have been designed to cover point 1.1 (iii) of the Edexcel A-level Biology B specification but also make links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as enzymes, translocation in the phloem and the lac operon in the control of gene expression. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge
AQA GCSE Combined Science P1 (Energy) REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science P1 (Energy) REVISION

(0)
An engaging lesson presentation (41 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P1 (Energy) of the AQA GCSE Combined Science specification (specification unit P6.1). The topics that are tested within the lesson include: Energy stores and systems Changes in energy Efficiency Students will be engaged through the numerous activities including quiz rounds like “ERRORS with the equation calculations” whilst crucially being able to recognise those areas which need further attention
Respiration produces ATP (AQA A-level Biology)
GJHeducationGJHeducation

Respiration produces ATP (AQA A-level Biology)

(0)
This lesson describes how respiration produces ATP by substrate-level and oxidative phosphorylation. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 7 lessons which have been designed to cover the detailed content of point 5.2 (RESPIRATION) of the AQA A-level Biology specification. As the first lesson in this sub-topic, it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Students met phosphorylation in topic 5.1 when considering the light-dependent reactions of photosynthesis and their knowledge of the production of ATP in this plant cell reaction is called on a lot in this lesson to show the similarities. The students are also tested on their recall of the structure and function of ATP, as covered in topic 1.6, through a spot the errors task. By the end of the lesson, the students will be able to name and describe the different types of phosphorylation and will know that ATP is produced by substrate-level phosphorylation in glycolysis and the Krebs cycle and by oxidative phosphorylation in the final stage of aerobic respiration with the same name.
Krebs cycle (AQA A-level Biology)
GJHeducationGJHeducation

Krebs cycle (AQA A-level Biology)

(0)
This fully-resourced lesson looks at the series of oxidation-reduction reactions that form the Krebs cycle and focuses on the products in terms of reduced NAD, FAD and ATP. The engaging PowerPoint and accompanying resource have both been designed to cover the fifth part of point 5.2 of the AQA A-level Biology specification. The lesson begins with a version of the Impossible game where students have to spot the connection between 8 of the 9 terms and will ultimately learn that this next stage is called the Krebs cycle. The main part of the lesson challenges the students to use descriptions of the main steps of the cycle to continue their diagram of the reactions. Students are continually exposed to key terminology such as decarboxylation and dehydrogenation and they will learn where carbon dioxide is lost and reduced NAD and FAD are generated. They will also recognise that ATP is synthesised by substrate level phosphorylation. The final task challenges them to apply their knowledge of the cycle to work out the numbers of the different products and to calculate the number of ATP that must be produced in the next stage This lesson has been designed to tie in with the other uploaded lessons on glycolysis, anaerobic respiration, the Link reaction and oxidative phosphorylation.
Link reaction (AQA A-level Biology)
GJHeducationGJHeducation

Link reaction (AQA A-level Biology)

(0)
This clear and concise lesson looks at the role of the Link reaction in the conversion of pyruvate to acetyl coenzyme A which will then enter the Krebs cycle. The PowerPoint has been designed to cover the fourth part of point 5.2 of the AQA A-level Biology specification which states that students should know about this conversion and the production of reduced NAD The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.
Glycolysis (OCR A-level Biology)
GJHeducationGJHeducation

Glycolysis (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the process and site of glycolysis and explains how the phosphorylation of glucose and the production and oxidation of triose phosphate results in 2 molecules of pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 5.2.2 © of the OCR A-level Biology A specification. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation, splitting and oxidation are the three main stages that need to be known for this specification. Time is taken to explain the key details of each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain, is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. This lesson has been written to tie in with the other uploaded lessons on the Link reaction, Krebs cycle, oxidative phosphorylation and anaerobic respiration