Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1122k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
STEM CELLS
GJHeducationGJHeducation

STEM CELLS

(0)
An engaging lesson presentation which looks at the two types of animal stem cells, exploring their important differences and briefly looking at their potential uses in medicine. The lesson begins by looking at the meaning of the term differentiation and then challenging students to draw a simple conclusion once they know that stems cells are undifferentiated cells. Time is taken to look into this part of the knowledge in depth but then students are given the key points which must be understood for them to move forwards. Students are told that there are two types of animal stem cells before a quiz competition is used to get them to predict which one of the two is being described by the clues. The answers to the competition then have to be used to write a summary passage about the two types. Students are also told that stem cells exist in plants in the form of meristem cells. Finally, Parkinson’s disease and Diabetes mellitus Type I are used as examples of conditions that could be potentially treated with stem cells.
Writing chemical symbol equations
GJHeducationGJHeducation

Writing chemical symbol equations

(0)
A fully-resourced lesson which uses a step-by-step guide to show students how to write fully balanced symbol equations. The lesson includes an engaging lesson presentation (38 slides) and associated worksheets containing questions which iaredifferentiated. The lesson begins by talking the students through the three steps involved in writing a chemical symbol equation. The first step involves writing in the formula for the elements. Students are introduced to the term, diatomic, and shown the 8 molecules that have to be written as a pair of atoms. Moving forwards, students are shown how to write chemical formulae for ionic compounds. They are reminded of how to use the group of the Periodic Table to work out the ion charge and how this is crucial when writing the formula. They are also shown how to write formulae which include brackets which is necessary when the charged molecules are involved. Finally, students are reminded of the rules of balancing symbol equations. There are progress checks at each stage so that students can assess their understanding and any misconceptions can be be addressed immediately. Time is taken to talk about state symbols, in case the exam question requires these to be included in the equation. The final section of the lesson involves students bringing their new-found skills together to write symbol equations for a range of reactions, including a neutralisation and reversible reaction. This task is differentiated so that students who need a little bit of assistance can still access the work. This lesson has been written for GCSE students (14-16 year olds in the UK)
Calculating masses in reactions
GJHeducationGJHeducation

Calculating masses in reactions

(0)
A fully-resourced lesson which guides students through using moles to calculate the mass of a substance in a reaction. The lesson includes a detailed lesson presentation (22 slides) and associated worksheets which are used to check the skills and understanding of the students. The lesson begins by introducing the students to the three steps involved in a calculating mass question. These skills include calculating the relative formula mass and identifying molar ratios in equations to calculate amounts so time is taken to recap on how this is done before students are given the opportunity to try some progress check questions. A worked example brings these three steps together to guide the students to the final answer. The final task involves 4 questions where students are challenged to apply their new-found knowledge. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
Formulae of ionic compounds
GJHeducationGJHeducation

Formulae of ionic compounds

(0)
An engaging and informative lesson presentation (43 slides) that shows students how to write accurate chemical formulae for ionic compounds. In order to write accurate chemical formulae, students need to know the charges of the ions involved. For this reason, the lesson begins by reminding students how they can use the Periodic Table to work out the charge of the charged atoms. Students are shown how they can use these ion charges to write the formula and then are given the opportunity to apply this to a number of examples. Moving forwards, students are shown how some formulae need to contain brackets. The lesson finishes with a competition called “Ye Olde Chemical Formula Shop” where students get points if they are the first to work out the formula of a given substance. This lesson has been written for GCSE students.
CRACKING hydrocarbons
GJHeducationGJHeducation

CRACKING hydrocarbons

(0)
A fully-resourced lesson which looks at the chemical reaction of cracking and the conditions that are needed for this reaction on both an industrial scale and in a laboratory. The lesson includes an engaging lesson presentation (33 slides) and an associated worksheet containing questions for a progress check. The lesson begins by challenging the students to use their knowledge of alkanes and a given example to work out the name of a 6, 7 and 8 carbon alkane. Students need to be able to name the alkanes and alkenes in order to understand the products of a cracking reaction. A number of quiz competitions are used to introduce both the name of the reaction but also the temperature that is needed when it is carried out on an industrial scale. Students will then be shown a diagram of a cracking experiment in a laboratory so they can discover that a catalyst is also needed. Students will learn, either through carrying out the experiment or through the informative slide, that the product of a cracking reaction is a smaller alkane molecule and a smaller alkene molecule. Time is taken to go back over the meaning of saturated and unsaturated and once the students have been introduced to bromine water, they are challenged to work out what the respective reactions will be when it is added to an alkane and an alkene. The remainder of the lesson focuses on writing word and chemical symbol equations for a cracking reaction. Students will be shown how the second product of a reaction can be worked out when the reactant and first product are provided and then they challenge themselves by trying to write three equations. Understanding checks are written into the lesson at regular places to allow the students to check on their understanding. This lesson has been designed for GCSE students.
Development of the ATOM
GJHeducationGJHeducation

Development of the ATOM

(0)
An informative lesson presentation (44 slides) that looks at the work of the key Scientists involved in the development of the atomic model. Dalton, Thomson, Rutherford and Bohr were four men whose work has led to the changes in the atomic model over the years and this lesson looks at parts of each of their work. There is a focus on Rutherford’s work with the alpha particles and students are challenged to draw conclusions based on the deflections they are shown. There is lots of time written into the lesson for consolidation and regular progress checks ensure that students have the opportunity to assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who perhaps are carrying out a project on the atom and want to add detail to their work
Biological polymers
GJHeducationGJHeducation

Biological polymers

(0)
A resourced lesson which looks at a number of examples of biological polymers. The lesson includes an engaging lesson presentation (40 slides) and a couple of worksheets to be used in the understanding check task. The starter activity challenges the students to use their Chemistry knowledge to come up with the abbreviation DNA. They will learn the key details of this polynucleotide and then time and focus is given to the nitrogenous bases and how they bond between the two strands. Moving forwards, students will be shown the next biological polymer that is a polypeptide. They are briefly shown how to draw a block diagram to represent the chain of amino acids. The final polymer are carbohydrates and students will learn how glycogen, starch and cellulose are formed from glucose monomers. Regular progress checks are written into the lesson at regular intervals to allow the students to check their understanding and ask questions. This lesson has been written for GCSE students
Detecting ANIONS
GJHeducationGJHeducation

Detecting ANIONS

(0)
An engaging and practical based lesson presentation (24 slides) which challenges the students to carry out a range of practical tasks to learn the identification tests and positive results for the anions. The lesson begins by challenging the students to use their prior knowledge of chemical formulae to name two sets of ions. Students will be reminded of the definition of a cation so they can use this to write an accurate one for the anions. The rest of the lesson looks at the different tests and time is taken to explain the details behind each of them. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding. A set homework has also been included. This lesson has been written for GCSE students.
State symbols
GJHeducationGJHeducation

State symbols

(0)
A quick and fun lesson which goes through the accurate addition of state symbols to balanced symbol equations. The aim of this lesson is to give students quick and easy ways to recognise the state of matter of a reactant or product whilst being engaged trough the format of the lesson. A number of quick quiz competitions are used in the lesson, either to introduce a new term of to act as a fun understanding check. First of all, students will use their Chemistry knowledge to come up with the fourth symbol, aq, which is commonly forgotten. Moving forwards, a worked example is used to guide the students through adding the state symbols. A visual of the experiment is shown in a video but could be done as a demonstration to help the students further. Finally, the students are challenged to apply their new-found knowledge and write a fully balanced symbol equation with state symbols. An assistance sheet is available for those who need a little push. This lesson has been designed for GCSE students
Non-communicable diseases
GJHeducationGJHeducation

Non-communicable diseases

(0)
An informative lesson presentation (38 slides) that looks at a range of non-communicable diseases and also explores how risk factors can increase the chances of an individual having one of these diseases. The lesson begins by looking at CHD so that students can recognise that this is a non-communicable disease and check on their understanding of this key term. Moving forwards, a step by step question and answer format is used to show students how to form a long answer. Key terminology such as thrombosis and atherosclerosis are introduced using quick quiz competitions which act to maintain the engagement. The rest of the lesson focuses on a range of risk factors for cardiovascular diseases and time is taken to deepen knowledge of the human anatomy by challenging students to link the names of arteries to the organs that they supply. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be addressed. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
Hooke's Law
GJHeducationGJHeducation

Hooke's Law

(0)
An engaging, practical-based lesson presentation (22 slides), accompanied by a practical worksheet and application questions which together explore how the extension of a spring is related to force according to Hooke’s Law. The lesson begins by introducing the name of the law and looking at the equation which connects the force, extension and spring constant. As spring constant is likely to be a new term to students, time is taken to look at the definition of this key term. Students are given hints throughout the lesson about potential issues to look out for, including the unit of spring constant being N/m when the majority of springs are small enough that their extension will be measured in cm or mm. Moving forwards, students will follow the provided experimental method to carry out the investigation and produce a set of results which can be used to plot the line. The two distinct sections of the line are discussed and the actual words of Hooke’s Law are given and again discussed and considered. The final part of the lesson involves the students being challenged to apply their knowledge of the law to a range of application questions and assessing against the displayed mark scheme. This lesson has been written for GCSE students but can be used with KS3 students who are studying the extension of a spring
Equations of motion
GJHeducationGJHeducation

Equations of motion

(0)
A concise lesson presentation (22 slides) and question worksheet, which together focus on the challenge of applying the equations of motion to calculation questions. Students are given this equation on the data sheet in the exam - therefore, this lesson shows them how they will be expected to rearrange in it four ways. For this reason, the start of the lesson revisits the skills involved in rearranging the formula, beginning with simple tasks and building up to those that involve indices as are found in this equation. Once students have practised these skills, they are challenged to answer 4 questions, although 1 is done together with the class to visualise how to set out the working. This lesson has been designed for GCSE students
Bond energy calculations
GJHeducationGJHeducation

Bond energy calculations

(0)
An informative lesson presentation (24 slides), accompanied by a set of differentiated question worksheets, which together guide students through calculating energy changes in reactions and then challenges them to apply their new-found knowledge. The lesson begins by asking the students to complete a sentence which details how energy is taken in to break bonds in the reactants and given out when bonds are formed in the products. The bond energy table is then introduced so that students understand how it will be used in questions. Moving forwards, a step by step guide is used to calculate the energy change value for two reactions and students are shown how to interpret the positive or negative result as endothermic or exothermic respectively. The remainder of the lesson asks the students to apply what they have learnt to calculate the energy change for two more reactions. This question worksheet is differentiated two ways so that students who need extra assistance can still access the work. This lesson has been designed for GCSE students
Reactivity series of metals
GJHeducationGJHeducation

Reactivity series of metals

(0)
An engaging, practical-based lesson presentation (34 slides), accompanied by an assistance sheet, which together look at how the results of displacement reactions can be used to order the metals into the reactivity series. The lesson begins by introducing a displacement reaction and ensuring that students understand the meaning of this term and how it relates to the topic of the lesson. Students will carry out a series of 12 displacement reactions, involving 4 different metals and will then be challenged to interpret the results to place the metals into their allocated positions in the series. Moving forwards, the students are given the results of more reactions, some which occurred and others which didn’t so they can place the remaining metals into the reactivity series. Time is also taken to understand how the position of hydrogen in the series can be used to predict the results of reactions between metals and acids. This lesson has been written for GCSE students but could be used with higher ability KS3 students
Atomic structure
GJHeducationGJHeducation

Atomic structure

(0)
A concise lesson presentation (27 slides) that looks at the key details of the sub-atomic particles and briefly explores how the atomic and mass numbers of the Periodic Table can be used to calculate the numbers of these particles in different atoms. The lesson begins with a Mathematical link as students are challenged to convert the size of an atom from standard form into a real number. Moving forwards, students will meet the three sub-atomic particles and be asked to predict which one is positive, neutral and negative in charge. The relative mass of a proton is shown and then students are asked to work out the mass of a neutron and an electron by observing some experimental results with a scales. Finally, the students are shown how to use the atomic number to work out the number of protons (and electrons) in an atom and how to work out the number of neutrons. This lesson has been designed to act as a knowledge recall and top-up as this should have already been learnt at KS3.
Weight and gravitational field strength
GJHeducationGJHeducation

Weight and gravitational field strength

(0)
A fast-paced lesson that looks at weight and how this differs on different planets depending upon the gravitational field strength. At the start of the lesson, the students are shown the equation to calculate gravity force and weight and are challenged to spot a difference (if there is one)! Time is then taken to explain how weight is the term used when a mass comes into the gravitational field of the Earth (or other planets). A quick understanding check, with the gravitational field strength Olympics, is used to see whether students can calculate this field and their mathematical skills are tested with a number of conversions needed to do so. Moving forwards, students are shown a number of masses and weights on the Earth and the Moon so they can see how mass does not change but weight will be different. The final task challenges them to apply their new-found knowledge to calculate their mass on the Earth, the Moon and Jupiter. This lesson has been designed for GCSE students but it is suitable for KS3 students who are exploring the Universe topic.
Series and Parallel circuits
GJHeducationGJHeducation

Series and Parallel circuits

(0)
A fully-resourced lesson that explores how resistance, current and potential difference differ between series and parallel circuits. This knowledge needs to be sound in order for students to be able to carry out circuit calculations. The lesson includes a practical and task-based lesson presentation (24 slides) and an accompanying worksheet. The lesson begins by challenging the students to recognise the key difference between the two circuits, in that in a parallel circuits, the electrons can follow more than one route. Moving forwards, each physical factor is investigated in each type of circuits and students carry out tasks or calculations to back up any theory given. Helpful analogies and hints are provided to guide the students through this topic which is sometimes poorly understood. Students will be challenged to use the V = IR equation on a number of occasions so that they are comfortable to find out any of these three factors. Progress checks have been written into the lesson at regular intervals so that students are constantly assessing their understanding and any misconceptions can be addressed. This has been written for GCSE students, but could be potentially used with higher ability KS3 students.
Food chains and webs
GJHeducationGJHeducation

Food chains and webs

(0)
An engaging lesson which focuses on the key terms which are involved in the ecology topic of food chains and food webs. Although this lesson is primarily designed for GCSE students, the content is suitable with KS3 students who are looking at the ecological relationships between organisms. The lesson begins by ensuring that students are confident in the construction of a food chain and that any common mistakes such as the arrows pointing in the wrong direction are eliminated. As with the other ecology lessons that I have designed, “ecology bingo” runs throughout the lesson to engage the students but also to challenge their recognition of key terms from definitions. Key terms such as producers and consumers are revisited in this lesson. The students will recall the names for the three types of consumers, based on their diets, and will make the link between the positions of producers, herbivores and carnivores in food chains. The remainder of the lesson focuses on the construction of a food web and describing changes in the numbers of organisms when there is a change to one of the other populations. Progress checks have been written into the lesson at regular intervals so students can constantly assess their understanding.
Meiosis
GJHeducationGJHeducation

Meiosis

(0)
A fully-resourced lesson, which has been designed for GCSE students, and includes an engaging and informative lesson presentation (37 slides) and differentiated worksheets. This lesson explores the type of cell division known as meiosis and focuses on the use of key terminology so that students can apply their knowledge to any organism that carries out this division, and not just humans. For this reason, time is taken at the start of the lesson to go over the meaning of the terms, diploid and haploid. Students are also taught how to think about the quantity of DNA inside a cell in terms of n, so that they can see and understand how this quantity changes through the cell cycle. They are encouraged to fill in a table at each stage of the cycle to show the quantity of DNA. In this way, students will understand how a diploid parent cell goes through interphase and as a result of DNA replication, the quantity of DNA is 4n as the first meiosis division is about to start. Although this could be viewed as high end knowledge, the format of this lesson should allow all abilities to understand and therefore have more chance of being successful with meiosis questions. Students are encouraged to think for themselves to work out how many daughter cells will result at the end of two divisions and to consider the quantity of DNA found inside those cells. At this stage of the lesson, students have to summarise all they have learnt into two key points (as shown on the cover image). The remainder of the lesson gives them the opportunity to apply their knowledge with a range of questions and it is not until right at the end that they are allowed to finally relate this cell division to humans. Although this lesson has been primarily designed for GCSE students (14 - 16 year olds in the UK), it is highly suitable for A-level lessons, especially if a teacher wants to recap on this cell division before extending knowledge.
Health and disease
GJHeducationGJHeducation

Health and disease

(0)
A fast-paced lesson that explores the meaning of “health” and introduces the idea of communicable and non-communicable diseases. The lesson begins by showing the students an example of a health survey so they can complete a definition of the meaning of this term. Despite being widely used in the English language, the actual Scientific definition is not always well known by students so this 1st task is an important one. Moving forwards, students are given 5 minutes to see if they can fill an A-Z with the names of different diseases. Students will learn that diseases can be grouped as communicable or non-communicable and will be encouraged to discuss what the determining factor is on this classification. A quiz competition called “TO COM or NOT TO COM” is a play on words of Shakespeare’s famous saying but acts to test whether the students can distinguish a number of diseases as being spread by pathogens or not. After each disease is revealed, time is taken to look at the details of some of them like cystic fibrosis and the zika virus. The lesson concludes with the example of the human-papilloma virus and the connection between this and cervical cancer so that students can recognise that sometimes both types of disease are involved. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but could be used with younger students who are looking at the healthy living topic.