Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1135k+Views

1938k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Overall reaction of aerobic respiration (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Overall reaction of aerobic respiration (Edexcel Int. A-level Biology)

(0)
This lesson describes the overall reaction of aerobic respiration, introducing the 4 stages before the finer details are covered in the upcoming lessons. The engaging PowerPoint and accompanying resource have been designed to cover points 7.1 (i) and (ii) of the Edexcel International A-level Biology specification and explains how each step in this many-stepped process is catalysed by a specific intracellular enzyme. The lesson begins with an introduction to glycolysis and students will learn how this first stage of aerobic respiration is also the first stage when oxygen is not present. This stage involves 10 reactions and an opportunity is taken to explain how each of these reactions is catalysed by a different, specific intracellular enzyme. A version of “GUESS WHO” challenges students to use a series of structural clues to whittle the 6 organelles down to just the mitochondrion so that they can learn how the other three stages take place inside this organelle. Moving forwards, the key components of the organelle are identified on a diagram. Students are introduced to the stages of respiration so that they can make a link to the parts of the cell and the mitochondria where each stage occurs. Students will learn that the presence of decarboxylase and dehydrogenase enzymes in the matrix along with coenzymes and oxaloacetate allows the link reaction and the Krebs cycle to run and that these stages produce the waste product of carbon dioxide. Finally, time is taken to introduce the electron transport chain and the enzyme, ATP synthase, so that students can begin to understand how the flow of protons across the inner membrane results in the production of ATP and the the formation of water when oxygen acts as the final electron acceptor.
Oxidative phosphorylation (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (Edexcel Int. A-level Biology)

(0)
This lesson describes how the electron transport chain and the chemiosmosis are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover point 7.4 of the Edexcel International A-level Biology specification and also looks at the role of the enzyme, ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress. This lesson has been specifically written to tie in with the other uploaded lessons on glycolysis, the link reaction and Krebs cycle.
Tissue fluid (Edexcel A-level Biology B)
GJHeducationGJHeducation

Tissue fluid (Edexcel A-level Biology B)

(0)
This lesson describes how tissue fluid is formed and reabsorbed and also describes the role of the lymphatic system in the return of fluid to the blood. The detailed PowerPoint and accompanying resources have been designed to cover points 4.6 (i & ii) of the Edexcel A-level Biology B specification and explains how a combination of the effects of hydrostatic pressure and oncotic pressure results in the formation of tissue fluid in animals. The lesson begins with an introduction to the arteriole and venule end of a capillary as these will need to be considered as separate entities when describing the formation of tissue fluid. A quick quiz competition introduces a value for the hydrostatic pressure at the arteriole end and students are challenged to first predict some parts of the blood will move out of the capillary as a result of the push from the hydrostatic pressure and this allows oncotic pressure to be initially explored. The main part of the lesson uses a step by step guide to describe how the net movement is outwards at the arteriole end before students will use this guidance to describe what happens at the venule end. In the concluding part of the lesson, students will come to recognise oedema as a condition where tissue fluid accumulates and they again are challenged to explain how this occurs before they finally learn how the fluid is returned to the circulatory system as lymph.
Structure of the mammalian kidney (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Structure of the mammalian kidney (Edexcel Int. A-level Biology)

(0)
This detailed lesson describes the gross and microscopic structure of the mammalian kidney. The engaging PowerPoint and accompanying resource have been designed to cover point 7.18 of the Edexcel International A-level Biology specification. The lesson was designed to tie in with the upcoming kidney lessons (7.19 - 7.21) on ultrafiltration, selective reabsorption and the control of mammalian plasma concentration and a common theme runs throughout to allow students to build their knowledge gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption.
Sensory, relay and motor neurones (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Sensory, relay and motor neurones (Edexcel Int. A-level Biology)

(0)
This lesson describes the structure and functions of the sensory, relay and motor neurones. The engaging PowerPoint and accompanying resources have been designed to cover point 8.1 of the Edexcel International A-level Biology specification but also considers the organisation of the nervous system into the central and peripheral nervous systems and therefore also covers point 8.10. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but time is taken to distinguish between them based on their structural features. The importance of the myelin sheath for the sensory and motor neurones is briefly discussed and students are introduced to key terminology such as saltatory conduction and Schwann cells so they are prepared for the upcoming lesson covering specification point 8.5. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones. Throughout the lesson, the organisation of the nervous system is discussed and students are provided with additional knowledge such as the differences between somatic and autonomic motor neurones.
Types of selection (Edexcel A-level Biology B)
GJHeducationGJHeducation

Types of selection (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how selection pressures act on a gene pool and cause stabilising, directional and disruptive selection. The PowerPoint and accompanying resources have been designed to cover point 8.3 (i) of the Edexcel A-level Biology B specification which states that students should be able to identify each type of selection by its effect on different phenotypes. The lesson begins with an introduction to the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. This shows changes in numbers of the organisms and sketch graphs are then constructed to show these changes in the population size. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions.
DNA replication (Edexcel A-level Biology B)
GJHeducationGJHeducation

DNA replication (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how DNA is replicated semi-conservatively, including the roles of DNA helicase, polymerase and ligase. The detailed PowerPoint and accompanying resources have been designed to cover point 1.4 (ii) of the Edexcel A-level Biology B specification The main focus of this lesson is the roles of DNA helicase in the breaking of the hydrogen bonds between nucleotide bases, DNA polymerase in forming the growing nucleotide strands and DNA ligase in the joining of the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
SELECTIVE REABSORPTION (OCR A-level Biology A)
GJHeducationGJHeducation

SELECTIVE REABSORPTION (OCR A-level Biology A)

(0)
This lesson has been written to cover the part of specification point 5.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the process of selective reabsorption. It has specifically been designed to build on the knowledge gained in the previous lessons on the structure of the nephron and ultrafiltration. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water. This lesson has been designed for students studying on the OCR-A level Biology A course and ties in nicely with the other lessons from 5.1.2 (c and d) on the structure and function of the kidney
Cohesion-tension model (Edexcel A-level Biology B)
GJHeducationGJHeducation

Cohesion-tension model (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the cohesion-tension model explains the transport of water from the roots to the shoots. The detailed PowerPoint and accompanying resources have been designed to cover point 4.7 (iii) of the Edexcel A-level Biology B specification This lesson has been written to follow on from the end of the previous lesson, which finished with the description of the transport of the water and mineral ions from the endodermis to the xylem. Students are immediately challenged to use this knowledge to understand root pressure and the movement by mass flow down the pressure gradient. Moving forwards, time is taken to study the details of transpiration pull and then the main focus is the interaction between cohesion and tension. The role of adhesive forces in capillary action is also explained. Understanding is constantly checked through a range of tasks and prior knowledge checks are also written into the lesson to challenge the students to make links to previously covered topics such as the structure of the transport tissues.
The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)
GJHeducationGJHeducation

The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)

(0)
This is a highly-detailed and fully-resourced lesson which covers the detail of specification point 5.1.2 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the roles of the hypothalamus, posterior pituitary, ADH and the collecting duct in the control of the water potential of the blood. Students learnt about the principles of homeostasis and negative feedback in an earlier module, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work. This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other uploaded lessons in module 5.1.2 which include the structure of the nephron, ultrafiltration and selective reabsorption.
Contraction of skeletal muscle (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Contraction of skeletal muscle (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the process of contraction of skeletal muscle in terms of the sliding filament theory. The PowerPoint and accompanying resources have been designed to cover point 7.11 of the Edexcel International A-level Biology specification and includes descriptions of the role of actin, myosin, troponin, tropomyosin, calcium ions, ATP and ATPase. The lesson begins with a study of the structure of the thick and thin filaments. Students will recognise that the protruding heads of the myosin molecule are mobile and this enables this protein to bind to the binding sites when they are exposed on actin. This leads into the introduction of troponin and tropomyosin and key details about the binding of calcium to this complex is explained. Moving forwards, students are encouraged to discuss possible reasons that can explain how the sarcomere narrows during contraction when the filaments remain the same length. This main part of the lesson goes through the main steps of the sliding filament model of muscle contraction and the critical roles of the calcium ions and ATP are discussed. The final task of the lesson challenges the students to apply their knowledge by describing the immediate effect on muscle contraction when one of the elements doesn’t function correctly. This lesson has been written to tie in with the previous lesson on the structure of skeletal muscle fibre (point 7.10)
Specialised features of the gametes (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Specialised features of the gametes (Edexcel Int. A-level Biology)

(0)
This lesson describes the relationship between the specialised features of the mammalian egg and sperm and their functions. The PowerPoint and accompanying resources have been designed to cover point 3.11 of the Edexcel International A-level Biology specification and includes a focus on the acrosome in the head of the sperm and the zona pellucida in the egg The lessons at the start of topic 3 (Cell structure, Reproduction and Development) described the ultrastructure of eukaryotic cells, so this knowledge is referenced throughout the lesson and the students are challenged on their recall and understanding through a range of prior knowledge checks. For example, two of the exam-style questions that are included in the resources challenge the students to explain why a sperm cell is classified as an eukaryotic cell and to recognise the centrioles and the nucleus from structural descriptions. Along with the mitochondria, time is then taken to discuss and to describe the role of these organelles in relation to the function of the sperm cell. When considering the fusion of the haploid nuclei to form a diploid nucleus in the nucleus, links are made to the upcoming topic of mitosis and the significance of this form of nuclear division. The importance of the enzymes that are found inside the acrosome is emphasised and this leads into the second half of the lesson where the layers surrounding the plasma membrane of the egg cell (corona radiata and zona pellucida) are examined The final part of this lesson has been specifically planned to prepare the students for the next lesson in topic 3, where the acrosome reaction, cortical reaction and the fusion of nuclei that are involved in fertilisation are described
Action potential (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Action potential (Edexcel Int. A-level Biology)

(0)
This lesson explains how a nerve impulse (action potential) is conducted along an axon and focuses on the role of the sodium and potassium ions. The PowerPoint and accompanying resources have been designed to cover point 8.4 of the Edexcel International A-level Biology specification and contains detailed descriptions of resting potential, depolarisation, repolarisation, hyperpolarisation and the refractory period. This topic is commonly assessed in the terminal exams so extensive planning ensures that this resource includes a wide range of activities to motivate and engage the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells.
Sympathetic & parasympathetic systems (Edexcel A-level Biology B)
GJHeducationGJHeducation

Sympathetic & parasympathetic systems (Edexcel A-level Biology B)

(0)
This detailed lesson describes the the structure and function of the motor neurones that form the autonomic nervous system and is responsible for automatic responses. The engaging PowerPoint and accompanying resource have been designed to cover point 9.4 (v) of the Edexcel A-level Biology B specification and describes the sympathetic and parasympathetic divisions and how they act antagonistically. The lesson begins with a focus on the types of effectors that will be connected to the CNS by autonomic motor neurones. Students will learn that effectors which are not under voluntary control such as cardiac muscle, smooth muscle and glands will be innervated by these neurones. Moving forwards, a quick quiz competition is used to introduced ganglia as a structure which connects the two or more neurones involved in the cell signalling between the CNS and the effector. This leads into the discovery of the two divisions and students will begin to recognise the differences between the sympathetic and parasympathetic systems based on function but also structure. The remainder of the lesson looks at the differing effects of these two systems. This lesson has been written to tie in with the lesson on the organisation of the mammalian nervous system which was covered earlier in this topic
Testing for reducing sugars & starch (AQA A-level Biology)
GJHeducationGJHeducation

Testing for reducing sugars & starch (AQA A-level Biology)

(0)
This lesson describes the tests that detect reducing and non-reducing sugars and starch using Benedict’s solution and iodine/potassium iodide. The PowerPoint and accompanying resource are part of the last lesson in a series of 4 lessons which have been designed to cover the content of topic 1.2 (Carbohydrates) of the AQA A-level Biology specification. The lesson begins with an explanation of the difference between a qualitative and quantitative test so that the students recognise that the two tests described within this lesson indicate the presence of a substance but not how much. The students are likely to have met these tests at GCSE so this lesson has been planned to build on that knowledge and to add the knowledge needed at this level. A step by step guide walks the students through each stage of the tests for reducing and non-reducing sugars and application of knowledge questions and prior knowledge checks are included at appropriate points to ensure understanding is complete. Time is also taken to ensure that students understand the Science behind the results. The rest of the lesson focuses on the iodine test for starch and the students will learn that the colour change is the result of the movement of an ion into the amylose helix.
Surface area to volume ratio (AQA A-level Biology)
GJHeducationGJHeducation

Surface area to volume ratio (AQA A-level Biology)

(0)
This lesson describes the relationship between the size of an organism or structure and its surface to volume ratio. The PowerPoint and accompanying worksheets have been designed to cover point 3.1 of the AQA A-level Biology specification and also have been specifically planned to prepare the students for the upcoming lessons in topic 3 on gas exchange and absorption in the ileum. The students are likely to have been introduced to the ratio at GCSE, but understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of the surface area to volume ratio in order to increase this relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson that walks them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of larger organisms to increase the ratio at their exchange surfaces is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. This is further demonstrated by the villi and the microvilli on the enterocytes that form the epithelial lining of these folds in the ileum. The final part of the lesson introduces Fick’s law of diffusion so that students are reminded that the steepness of a concentration gradient and the thickness of a membrane also affect the rate of diffusion.
Autosomal linkage (Edexcel A-level Biology B)
GJHeducationGJHeducation

Autosomal linkage (Edexcel A-level Biology B)

(0)
This lesson explains that autosomal linkage results from the presence of alleles on the same chromosome and uses biological examples to demonstrate this concept. The PowerPoint and accompanying worksheets have been designed to cover point 8.2 (iv) of the Edexcel A-level Biology B specification and supports students in the formation of their descriptions of how these results of these crosses can be explained by the events of meiosis (crossing over) This is a difficult topic which can be poorly understood by students so extra time was taken during the planning to split the concept into small chunks. There is a clear focus on using the number of parent phenotypes and recombinants in the offspring as a way to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the point of contact (chiasma) determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions and a link to the chi squared test which is covered in an upcoming lesson is also made. The main task of the lesson act as understanding check where students are challenged to analyse the results of genetic crosses involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene n humans and also the inheritance of body colour and wing length in Drosophila.
Endotherms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Endotherms (Edexcel A-level Biology B)

(0)
This detailed lesson describes how an endotherm regulates its temperature through behaviour and also physiologically. The engaging PowerPoint and accompanying resources have been designed to cover specification point 9.9 (vii) of the Edexcel A-level Biology B specification and includes descriptions of the roles of the autonomic nervous system, thermoreceptors, hypothalamus and skin. A wide range of activities have been written into this lesson so that students remain motivated throughout and take a genuine interest in the content. Understanding checks allow the students to assess their progress whilst the prior knowledge checks on topics such as enzymes and denaturation demonstrate the importance of being able to make connections and links between topics from across the specification. In addition to these checks, quiz competitions like HAVE an EFFECT which is shown in the cover image are used to introduce key terms and values in a fun and memorable way. The lesson begins by introducing the key term, endotherm, and challenging students to use their prior knowledge and understanding of terminology to suggest what this reveals about an organism. Moving forwards, students will learn how the heat generated by metabolic reactions is used as a source of internal heat. The main part of the lesson focuses on thermoregulation in humans (mammals) and time is taken to focus on the key components, namely the sensory receptors, the thermoregulatory centre in the hypothalamus and the responses brought about by the skin. The important details of why the transfer of heat energy between the body and the environment actually leads to a decrease in temperature are explored and discussed at length to ensure understanding is complete. Students are challenged to write a detailed description of how the body detects and responds to a fall in body temperature and this task is differentiated for those students who need some extra assistance. The peripheral thermoreceptors are introduced and this leads into the final section of the lesson that considers behavioural responses in humans and other animals.
Hardy-Weinberg equation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Hardy-Weinberg equation (Edexcel A-level Biology B)

(0)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equation to monitor changes in allele frequencies in a population. The detailed PowerPoint and differentiated practice questions worksheets have been designed to cover point 8.3 (iv) of the Edexcel A-level Biology B specification The lesson begins with a focus on the equation to ensure that the students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged
Adaptations (AQA A-level Biology)
GJHeducationGJHeducation

Adaptations (AQA A-level Biology)

(0)
This fully-resourced lesson describes how natural selection results in species with anatomical, behavioural and physiological adaptations. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the fourth part of point 4.4 of the AQA A-level Biology specification and make continual links to the earlier parts of this topic including evolution and genetics. A quick quiz competition at the start of the lesson introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links are made to the upcoming topic of taxonomy so that students are prepared for this lesson on species and classification hierarchy.