Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1246k+Views

2049k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The functions of the LIVER (OCR A-level Biology A)
GJHeducationGJHeducation

The functions of the LIVER (OCR A-level Biology A)

(2)
This is a highly detailed, engaging and fully-resourced lesson that covers the detail of the 2nd part of specification point 5.1.2 (b) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the functions of the mammalian liver. The liver performs a large number of metabolic functions and the majority of them are covered within this lesson. However, the lesson focuses on the following three roles: The formation of urea by deamination and the ornithine cycle The storage of glycogen The detoxification of alcohol As well as covering the detail of the current topic, numerous opportunities are taken to make links to other topics and to check on the students prior knowledge. Previous knowledge check questions on biological molecules, coenzymes and the structure of the liver are found dispersed within the understanding checks and quick quiz competitions are used to introduce key terms and values in a fun and a memorable way. This lesson has been designed for students on the OCR A-level Biology A course and ties in well with the other uploaded lessons on module 5.1.2 about the structure and function of the kidney
Mitosis as part of the cell cycle (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Mitosis as part of the cell cycle (Edexcel GCSE Biology & Combined Science)

(2)
This lesson has been designed to cover the content as detailed in points 2.1, 2.2 and 2.3 (Mitosis as part of the cell cycle) of the Edexcel GCSE Biology & Combined Science specifications. Consisting of a detailed and engaging PowerPoint (44 slides) and an accompanying worksheet, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how interphase, the 4 phases of mitosis and cytokinesis result in the production of genetically identical diploid daughter cells. Time is taken to go through each of the three stages of the cell cycle in detail so students can recognise how the key events of each stage allow this important form of “copying” cell division to occur. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like The Big REVEAL and YOU DO THE MATH, are used to introduce new terms and important values in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the Edexcel GCSE Biology or Combined Science specifications but can be used with older students who need to know the key details of the cell cycle for their A level course before taking it to greater depths
Maths in Edexcel GCSE Combined Science REVISION
GJHeducationGJHeducation

Maths in Edexcel GCSE Combined Science REVISION

(2)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the Edexcel GCSE Combined Science papers. The mathematical element of the Edexcel GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “It doesn’t HURT to CONVERT”, “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Calculating the relative atomic mass using the mass and abundance of isotopes Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Empirical formula Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change The BMI equation Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.
Phenotypic variation (AQA A-level Biology)
GJHeducationGJHeducation

Phenotypic variation (AQA A-level Biology)

(2)
This fully-resourced lesson explores how genetic and environmental factors cause phenotypic variation. The engaging PowerPoint and accompanying worksheets have been designed to cover the first part of point 7.3 of the AQA A-level Biology specification which states that students should be able to describe how mutations and meiosis both contribute to genetic variation Students are challenged at the start of the lesson to recognise the terms phenotype and species from their definitions in order to begin a discussion on the causes of the phenotypic variation within a species. Moving forwards, students will recall that mutations are the primary source of genetic variation and time is taken to look at the effect of gene and chromosome mutations. Just like the majority of parts of this specification point, gene mutations were covered earlier in topic 4 so these tasks act as a prior knowledge check as students have to recognise the different types of gene mutations and explain their effects on the primary structure with reference to the genetic code. These prior knowledge checks are found throughout the lesson and challenge the knowledge of other topics that include photosynthesis, meiosis and inorganic ions. The karyotype of an individual who has Down syndrome is used to introduce chromosome mutations and students will be introduced to the different types, with a focus on non-disjunction. The key events of meiosis that produce variation (crossing over and independent assortment) are explored and students will be given a mathematical formula to use to calculate the number of chromosome combinations in gametes and in the resulting zygote. The final part of the lesson looks at chlorosis and how an environmental factor can prevent the express of a gene.
Osmoregulation (CIE A-level Biology)
GJHeducationGJHeducation

Osmoregulation (CIE A-level Biology)

(2)
This lesson describes the roles of the hypothalamus, posterior pituitary, ADH and collecting ducts in osmoregulation. The PowerPoint and accompanying resources have been planned to cover the content of point (8) of topic 14.1 of CIE A-level biology specification (for assessment in 2025-27). Students covered the principles of homeostasis and negative feedback in the first lesson in this topic, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work.
Efficiency of energy transfer (AQA A-level Biology)
GJHeducationGJHeducation

Efficiency of energy transfer (AQA A-level Biology)

(2)
This lesson describes and explains how production is affected by a range of farming practices designed to increase the efficiency of energy transfer. The PowerPoint and accompanying resources are part of the third lesson in a series of 3 which have been designed to cover the detail included in specification point 5.3 of the AQA A-level Biology specification. Over the course of the lesson, a range of tasks which include exam-style questions with displayed mark schemes, guided discussion periods and quick quiz competitions will introduce and consider the following farming practices: raising herbivores to reduce the number of trophic levels in a food chain intensely rearing animals to reduce respiratory losses in human food chains the use of fungicides, insecticides and herbicides the addition of artificial fertilisers The ethical issues raised by these practices are also considered and alternative methods discussed such as the addition of natural predators and the use of organic fertilisers like manure As this is the last lesson in topic 5.3, it has been specifically planned to challenge the students on their knowledge of the previous two lessons and this includes a series of questions linking farming practice to the formula to calculate net production
Topic 4: Genetic information, variation and relationships between organisms (AQA A-level Biology)
GJHeducationGJHeducation

Topic 4: Genetic information, variation and relationships between organisms (AQA A-level Biology)

18 Resources
Every one of the lessons included in this bundle is detailed, engaging and fully-resourced, and has been written to cover the content as detailed in topic 4 of the AQA A-level Biology specification. The wide range of activities will maintain engagement whilst supporting the explanations of the content to allow the students to build a deep understanding of genetic information, variation and relationships between organisms. The following 18 lessons covering the 7 sub-topics are included in this bundle: 4.1: DNA, genes and chromosomes DNA in prokaryotes and eukaryotes Genes 4.2: DNA and protein synthesis Genome, proteome and the structure of RNA Transcription and splicing Translation 4.3: Genetic diversity can arise as a result of mutation or during meiosis The genetic code Gene mutations Chromosome mutations Meiosis 4.4: Genetic diversity and adaptation Genetic diversity Natural selection Directional and stabilising selection Adaptations 4.5: Species and taxonomy Species and taxonomy 4.6: Biodiversity within a community Biodiversity within a community Calculating an index of diversity The balance between conservation and farming 4.7: Investigating diversity Investigating diversity Interpreting mean values and the standard deviation If you would like to sample the quality of the lessons in this bundle, then download the DNA in prokaryotes and eukaryotes, structure of RNA, gene mutations, natural selection and standard deviation lessons as these have been uploaded for free
Edexcel A-Level Biology A (Salters Nuffield) REVISION LESSONS
GJHeducationGJHeducation

Edexcel A-Level Biology A (Salters Nuffield) REVISION LESSONS

8 Resources
This bundle of 8 revision lessons have been designed to include a range of exam questions (with explained answers), differentiated tasks and quiz competitions to enable students to assess their understanding of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification content. The 8 topics that are covered in the specification are included in this bundle and are: Topic 1: Lifestyle, Health and Risk Topic 2: Genes and Health Topic 3: Voice of the Genome Topic 4: Biodiversity and natural resources Topic 5: On the wild side Topic 6: Infection, immunity and forensics Topic 7: Run for your life Topic 8: Grey matter Students will enjoy the range of activities, which provide a much needed alternative to their other revision methods, and these lessons can be used throughout the duration of the course, as an end of topic revision lesson or in the lead up to mocks or the actual A-level terminal exams
Edexcel A-level Biology Topic 6 REVISION (Immunity, infection and forensics)
GJHeducationGJHeducation

Edexcel A-level Biology Topic 6 REVISION (Immunity, infection and forensics)

(3)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 6 (Immunity, infection and forensics) of the Pearson Edexcel A-level Biology A specification. The sub-topics and specification points that are tested within the lesson include: Know how DNA profiling is used for identification and determining genetic relationships Know how DNA can be amplified using the PCR Know the structure of a virus Understand how HIV infects human cells, causing a sequence of symptoms that may result in death Understand the non-specific responses of the body to infection Understand the roles of antigens and antibodies in the body’s immune response Understand the differences between the roles of B cells and T cells Understand how one gene can give rise to more than one protein through post-transcriptional changes Understand the difference between bacteriostatic and bactericidal antibiotics Students will be engaged through the numerous quiz rounds such as “FROM NUMBERS 2 LETTERS” and “Make sure you are very SPECIFIC” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
OCR GCSE Combined Science C3 REVISION (Chemical reactions)
GJHeducationGJHeducation

OCR GCSE Combined Science C3 REVISION (Chemical reactions)

(3)
A fully resourced lesson presentation (93 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C3 (Chemical reactions) of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Formulae of elements and molecules Formulae of ionic compounds Conservation of mass Chemical equations Half equations The mole Exothermic and endothermic reactions The pH scale Hydrogen ions and pH Electrolysis of molten salts Electrolysis of solutions Students will be engaged through the numerous activities including quiz rounds like “E Numbers” whilst crucially being able to recognise those areas which need further attention
CIE International A-level Biology TOPIC 6 REVISION (Nucleic acids and protein synthesis)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 6 REVISION (Nucleic acids and protein synthesis)

(3)
This is a detailed, engaging and fully-resourced REVISION LESSON which allows students of all abilities to assess their understanding of the content in topic 6 (Nucleic acids and protein synthesis) of the CIE International A-level Biology specification. Considerable time has been taken to design the lesson to include a wide range of activities to motivate the students whilst they evaluate their knowledge of DNA, RNA and the roles of these nucleic acids in DNA replication and protein synthesis. Most of the tasks have been differentiated so that students of differing abilities can access the work and move forward as a result of the tasks at hand. This lesson has been planned to cover as much of the specification as possible but the following sub-topics have received particular attention: The structure of DNA Phosphorylated nucleotides DNA replication Transcription and translation Gene mutations and their affect on the primary structure of a polypeptide The structure of RNA In addition to a focus on the current topic, links are made throughout the lesson to other topics such as the journey of an extracellular protein following translation and the cell cycle. If you like the quality of this revision lesson, please look at the other uploaded revision lessons for this specification
Control of blood glucose concentration (AQA GCSE Combined Science FT)
GJHeducationGJHeducation

Control of blood glucose concentration (AQA GCSE Combined Science FT)

(3)
This lesson has been designed to cover the detail of specification point 4.5.3.2 of the AQA GCSE Combined Science FOUNDATION TIER which states that students should be able to describe how the body detects and responds to an increase in blood glucose concentration. A considerable amount of time has been taken in the planning to ensure that the wide range of activities engages and motivates the students but that the key details are covered and understanding is checked and checked again. The start of the lesson uses a range of prior knowledge checks and quiz competitions to answer the questions of what actually is glucose and why is it so important that the levels in the blood are controlled. Students are then introduced to glycogen and the fact that this carbohydrate can be stored is reiterated so that they can recognise how glucose must be converted into this substance to lower the blood concentration. Again, a quiz round is used to get them to recall that the pancreas will be the receptor and the liver will act as the effector. The main task of the lesson involves the formation of a bullet point answer where students are challenged to use the information from earlier in the lesson to complete this description.
Topic 5: Energy transfers in and between organisms (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5: Energy transfers in and between organisms (AQA A-level Biology)

17 Resources
Normally the first topic to be taught in the second year of the AQA A-level Biology course, topic 5 contains some very important biological processes which include photosynthesis, respiration and energy transfer between organisms. All 17 lessons included in this bundle are highly detailed and have been planned at length to ensure that students remain motivated and engaged whilst being constantly challenged on their current understanding. Links to previously-covered topics are also made throughout the lessons. The following specification points are covered in these lessons: TOPIC 5.1 The light-dependent reaction of photosynthesis The use of reduced NADP and ATP from the light-dependent reaction in the light-independent reaction The light-independent reaction of photosynthesis Environmental factors that limit the rate of photosynthesis TOPIC 5.2 Respiration produces ATP Glycolysis as the first stage of aerobic and anaerobic respiration The conversion of pyruvate to lactate or ethanol in the anaerobic pathways The link reaction and the Krebs cycle Synthesis of ATP by oxidative phosphorylation Other respiratory substrates TOPIC 5.3 Gross primary production and net primary production The net production of consumers Farming practices designed to increase the efficiency of energy transfer TOPIC 5.4 The role of microorganisms in the nitrogen cycle The phosphorus cycle, including the role of saprobionts and mycorrrhizae The use of artificial and natural fertilisers The environmental issues arising from the use of fertilisers including leaching and eutrophication. If you would like to sample the quality of the lessons in this bundle, then download the chloroplast structure, anaerobic respiration, oxidative phosphorylation, GPP and phosphorus cycle lessons as these have been uploaded for free
AQA A-level Biology Topic 6: Organisms respond to changes in their internal and external environments
GJHeducationGJHeducation

AQA A-level Biology Topic 6: Organisms respond to changes in their internal and external environments

20 Resources
This bundle contains 20 fully-resourced and detailed lessons that have been designed to cover the content of topic 6 of the AQA A-level Biology specification which concerns the responses of organisms to stimuli. The wide range of activities included in each lesson will engage the students whilst the detailed content is covered and the understanding and prior knowledge checks allow them to assess their progress on the current topic as well as challenging them to make links to other related topics. Many of the tasks are differentiated to allow differing abilities to access the work and be challenged. The following sub-topics are covered in this bundle of lessons: Survival and response in flowering plants The protective effect of a simple reflex The role of sensory receptors as outlined by the Pacinian corpuscle The human retina as a sensory receptor The differences in rods and cones that enable different sensitivity to light, colour and visual acuity The roles of the SAN, AVN, Bundle of His and Purkyne fibres in the conduction system of the heart The control of heart rate The structure of a myelinated motor neurone The factors that affect the speed of conduction of an impulse The generation and transmission of nerve impulses The transmission at a cholinergic synapse and a neuromuscular junction Summation The contraction of skeletal muscles The structure and properties of slow and fast skeletal muscle fibres The principles of homeostasis including negative feedback systems The control of blood glucose concentration by the controlled release of insulin and glucagon The causes and control of diabetes type I and II The gross structure of the kidney The detailed structure of the nephron The production of glomerular filtrate The reabsorption of glucose and water in the PCT Maintaining a gradient of sodium ions in the medulla by the loop of Henle The role of the hypothalamus, posterior pituitary and ADH in osmoregulation This is one of the 8 topics which have to be covered over the length of the 2 year course and therefore it is expected that the teaching time for this bundle will be in excess of 2 months If you want to see the quality of the lessons before purchasing then the lessons on responses in flowering plants, saltatory conduction, the contraction of skeletal muscles and ultrafiltration are free resources to download
OCR GCSE Combined Science Paper 1 REVISION (Biology topics B1 - B3)
GJHeducationGJHeducation

OCR GCSE Combined Science Paper 1 REVISION (Biology topics B1 - B3)

(5)
This is a fully-resourced REVISION lesson that consists of an engaging PowerPoint (142 slides) and associated worksheets that challenge the students on their knowledge of topics B1 - B3 (Cell-level systems, Scaling up and Organism-level systems) of the OCR Gateway A GCSE Combined Science specification and can be assessed on PAPER 1. A wide range of activities have been written into the lesson to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to include as much which of the content which could be assessed on paper 1, but the following sub-topics have been given particular attention: Eukaryotic and prokaryotic cells Structure of a bacterium The functions of the components of blood Specialised cells Active transport Osmosis Structure of DNA Mitosis and the cell cycle Functions of the organelles of animal and plant cells Electron microscopy Calculating size Surface area to volume ratio Arteries and veins Reflexes Hormones IVF The mathematic elements of the Combined Science specification are challenged throughout the resource. Due to the size of this resource, it is likely that it’ll be used over the course of a number of lessons and it is suitable for use as an end of topic revision aid, in the lead up to the mocks or in the lead up to the actual GCSE exams.
Cytoskeleton (OCR A-level Biology A)
GJHeducationGJHeducation

Cytoskeleton (OCR A-level Biology A)

(1)
This lesson describes the importance of the cytoskeleton, and focuses on the role of these proteins in the transport within cells and cell movement. The PowerPoint and accompanying resource have been designed to cover point 2.1.1 (j) of the OCR A-level Biology A specification and has been specifically designed to tie in with The previous lesson covered the ultrastructure of eukaryotic cells and the function of the different cellular components and this lesson has been planned to build on that knowledge to show how the cytoskeleton allows for the movement of these organelles from one part of the cell to another. In particular, the students will recognise how the dragging movement of the motor proteins along the microtubule track is important for the proteins produced at the RER to move to the Golgi before the vesicles are then moved to the membrane for exocytosis. In this way, this lesson also covers specification point 2.1.1 (i). Other examples such as the movement of the synaptic vesicles and the contraction of the spindle fibres during anaphase are used to consolidate understanding further. The cilia and the flagellum are also described and links are made to related topics such as the primary non-specific defences against pathogens. In order to engage and motivate the students during the 7 lessons in this module, a running quiz competition has been written into each of the lessons and 3 rounds are incorporated into this lesson. A quiz scoresheet to keep track of the points is included in this resource.
Structure of the mammalian kidney and nephron (WJEC A-level Biology)
GJHeducationGJHeducation

Structure of the mammalian kidney and nephron (WJEC A-level Biology)

(1)
This detailed lesson describes the structure of the mammalian kidney and the nephron. The PowerPoint and accompanying resource have been designed to cover specification point [c] in topic 7 of A2 unit 3 of the WJEC A-level Biology specification. The lesson has been planned to tie in with the other lessons in topic 7 on reabsorption in the proximal tubule and the role of the ADH in the homeostatic balance of blood water potential and a common theme runs throughout to allow students to build their knowledge gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption. Please note that there are no electron micrographs of the kidney in this lesson.
Standard deviation (AQA A-level Biology)
GJHeducationGJHeducation

Standard deviation (AQA A-level Biology)

(1)
This lesson describes how to calculate the mean and standard deviation of collected data and describes how these values may be interpreted. The PowerPoint and accompanying worksheets are part of the second lesson in a series of 2 lessons which have been designed to cover point 4.7 (Investigating diversity) of the AQA A-level Biology specification. It is important to note that the students will not be required to calculate the standard deviation in written papers but that they do need to understand how these values are obtained and what they could indicate. The lesson begins with an introduction of the standard deviation as a measure of the spread around the mean. The students will learn that interpreting the data is a critical requirement of this A-level course and this initial portion of the lesson considers how the spread of the data around the mean can lead to differing suggestions about reliability. A step by step guide walks the students through each stage of the calculation of the standard deviation, which includes the calculation of the mean, and they will complete a worked example with the class. A quick quiz round introduces the values of 68 and 95 in a fun way to encourage the students to remember that if the focus of the data shows a normal distribution, 68% of the observations are within +/- one standard deviation and 95% are within 2 standard deviations. The final task challenges the students to apply their knowledge to data about the birth weights of humans at a UK hospital on one day in 2020.
Cellulose & starch (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Cellulose & starch (Edexcel Int. A-level Biology)

(1)
This lesson describes the relationship between the structure and function of the polysaccharides, starch and cellulose. The detailed PowerPoint and accompanying resource have been designed to cover point 4.3 of the Edexcel International A-level Biology specification and includes a focus on the role of the hydrogen bonds between the beta-glucose molecules in the formation of cellulose microfibrils. The structure of amylose and amylopectin was described during a lesson in topic 1, so the start of this lesson challenges the students on their recall of these details. They have to complete a comparison table for these two polysaccharides by identifying the monomer and type of glycosidic bonds that are found in each of the structures. Time is taken to explain how the greater resistance to digestion of amylose means that this carbohydrate is important for plant energy storage whereas the multiple chain ends in the branched amylopectin means that this polysaccharide can be hydrolysed quickly when energy is needed. The rest of the lesson describes the structure of cellulose and focuses on the link between the structure and the need for this polysaccharide to support the plant cell as well as the whole plant. Students will see how every other beta glucose monomer is rotated by 180 degrees and will learn that hydrogen bonds form between these molecules on the same chain as well as between adjacent chains in a cellulose microfibril. The lesson concludes with a quick quiz competition where the students have to compete to open a safe using a combination made up of key values associated with glycogen, starch and cellulose.
Ultrastructure of eukaryotic cells (Edexcel SNAB)
GJHeducationGJHeducation

Ultrastructure of eukaryotic cells (Edexcel SNAB)

(1)
This fully-resourced lesson describes the ultrastructure of eukaryotic cells and the role of the RER and Golgi apparatus in protein transport. The engaging and detailed PowerPoint and accompanying exam-question worksheets (which are all differentiated) have been primarily designed to cover point 3.2 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also covers 3.1 which states that students should know that living organisms are made of cells, sharing some common features As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all of the 8 topics in the Edexcel course and intricate planning has ensured that these links to previously covered topics as well as upcoming ones are made throughout the lesson. A wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, will maintain motivation and engagement whilst covering the finer details of the following structures: nucleus nucleolus centrioles ribosomes rough endoplasmic reticulum Golgi apparatus lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane As mentioned above, all of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to go through all of the tasks