Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic 1: Cell structure (CIE A-level Biology)
GJHeducationGJHeducation

Topic 1: Cell structure (CIE A-level Biology)

7 Resources
As Biology is the study of living organisms which are built out of cells, a clear understanding of the topic of cell structure is critical for a student’s success in A-level Biology. Intricate planning has gone into all 7 of the lessons included in this bundle and the variety of tasks will engage and motivate the students whilst the details of the following specification points in topic 1 of the CIE A-level Biology course are covered: Topic 1.1: The microscope in cell studies Use an eyepiece graticule and stage micrometer to measure cells Use of the millimetre, micrometre and nanometre Distinguish between resolution and magnification The use of light and electron microscopes Calculate the actual sizes of specimens Topic 1.2: Cells as the basic units of living organisms Recognise eukaryotic cell structures and outline their functions State that ATP is produced in the mitochondria and the chloroplast and the role of this molecule in cells The structure of a typical prokaryotic cell The differences between eukaryotic and prokaryotic cells The key features of viruses If you would like to sample the quality of these lessons, download the magnification and resolution lesson, the eukaryotic cell structures lesson and the viruses lesson as these have been shared for free
Magnification formula (AQA A-level Biology)
GJHeducationGJHeducation

Magnification formula (AQA A-level Biology)

(0)
This lesson describes how to use the magnification formula to calculate the magnification or the actual size in a range of units. The PowerPoint and accompanying resources have been designed to cover the 3rd part of point 2.1.3 of the AQA A-level Biology specification The students are likely to have met the magnification formula at GCSE so this lesson has been written to build on that knowledge and to support them with more difficult questions when they have to calculate actual size without directly being given the magnification. A step by step guide is used to walk the students through the methodology and useful tips are provided. Students could be asked to calculate the actual size in millimetres, micrometres, nanometres or picometres so time is taken to ensure that they can convert between one and another. This lesson has been written to tie in with the previous two lessons on microscopes and measuring the size of an object and the two rounds of the ongoing quiz competition take place in this lesson.
Structure & properties of cell membranes (Edexcel International A-level Biology)
GJHeducationGJHeducation

Structure & properties of cell membranes (Edexcel International A-level Biology)

(0)
This detailed lesson describes the structure and properties of the cell membrane, focusing on the phospholipid bilayer, cholesterol and membrane proteins. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 2.2 (i) of the Edexcel International A-level Biology specification and clear links are made to Singer and Nicholson’s fluid mosaic model which is covered in the following lesson Students met triglycerides in topic 1 and so a quick quiz competition at the start of the lesson challenges their recall of the structure of these lipids so that they can recognise the similarities and differences to the structure of phospholipids. Time is taken to look at the differing properties of the phosphate head and the fatty acid tails in terms of water and the class is challenged to work out how the phospholipids must be arranged when there’s an aqueous solution on the inside and outside of the cell. This introduces the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are fused and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
Topic 2.1: Cell structure (AQA A-level Biology)
GJHeducationGJHeducation

Topic 2.1: Cell structure (AQA A-level Biology)

8 Resources
This bundle of 8 lesson PowerPoints and accompanying resources contain a wide variety of tasks which will engage and motivate the students whilst covering the details of topic 2.1 of the AQA A-level Biology specification. Cells and their structure are linked to all of the other 7 topics in this course so a clear understanding is critical to a student’s success. The tasks which include exam-style questions (with displayed mark schemes), discussion points and quiz competitions will cover the following parts of topic 2.1: The structure and function of the cell-surface membrane, nucleus, nucleolus, mitochondria, chloroplasts, Golgi apparatus, lysosomes, ribosomes, RER and SER, cell wall and cell vacuole The specialised cells of complex, multicellular organisms The structures of a typical prokaryotic cell The differences between prokaryotic and eukaryotic cells The structure of viruses The principles and limitations of optical microscopes, transmission electron microscopes and scanning electron microscopes Measuring the size of an object using an optical microscope Using the magnification formula If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses and microscopes lessons as these have been uploaded for free
GALP as a raw material (Edexcel A-level Biology B)
GJHeducationGJHeducation

GALP as a raw material (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how GALP is used as a raw material in the production of monosaccharides, amino acids and other molecules. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.7 (vii) of the Edexcel A-level Biology B specification concerning the uses of GALP but as the lesson makes continual references to biological molecules, it can act as a revision tool for a lot of the content of topic 1. The previous lesson covered the light-independent stage and this lesson builds on that understanding to demonstrate how the product of the Calvin cycle, glyceraldehyde phosphate, is used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the GALP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from GALP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose (and fructose and galactose) sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this module on the structure of the chloroplast and the light-dependent and light-independent stages of photosynthesis.
Measuring cells and units (CIE A-level Biology)
GJHeducationGJHeducation

Measuring cells and units (CIE A-level Biology)

(0)
This lesson describes how the eyepiece graticule and stage micrometer are used in the measurement of cells. The engaging PowerPoint and accompanying resources have been designed to cover point 1.1 [c] of the CIE A-level Biology specification and also includes a number of tasks that have been written to ensure that students are able to recognise the millimetre, micrometre and nanometre as units of size and that they are able to convert between them. As this content is part of topic 1.1, it is likely that this lesson on the measurement of cells and the units of size will be one of the first that students will encounter in this A-level course. With this in mind, this lesson and the next two on microscopes and calculating actual size have been specifically written to contain a wide variety of tasks, including an ongoing quiz competition. This will act to maintain engagement in a topic that can sometimes discourage students at this early stage of the course whilst ensuring that the key content is covered and understanding is constantly checked. A step by step guide walks them through the use of the scale on the stage micrometer to identify the size of the divisions of the eyepiece graticule and then they are challenged to apply this method to a series of questions. Useful hints are provided throughout the lesson and students will be able to confidently convert between metres, millimetres, micrometres and nanometres by the end of the lesson A quiz scoresheet is included with the lesson so that teachers can keep track of the points won in the different rounds and add them to those won in the upcoming lessons in topic 1.1
The difference between monosaccharides, disaccharides & polysaccharides
GJHeducationGJHeducation

The difference between monosaccharides, disaccharides & polysaccharides

(0)
This lesson describes the differences between monosaccharides, disaccharides and polysaccharides, including glycogen and starch. The PowerPoint and accompanying resource have been designed to cover point 1.2 (i) of the Edexcel International A-level Biology specification and the main aim of the lesson is to prepare the students for the upcoming lessons on the individual carbohydrate groups. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen and starch are introduced as well as amylose and amylopectin as components of this latter polymer.
Structure of monosaccharides (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Structure of monosaccharides (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the relationship between the structure of monosaccharides and their roles in living organisms. The engaging PowerPoint and accompanying resources have been designed to cover the second part of points 1.2 & 1.4 of the Edexcel International A-level Biology specification and describes alpha-glucose, galactose, fructose, deoxyribose and ribose. The lesson begins by reminding students that monosaccharides are the simplest sugars and that these monomers provide energy. Using the molecular formula of glucose as a guide, students will be given the general formula for the monosaccharides and will learn that deoxyribose is an exception to the rule that the number of carbon and oxygen atoms are equal. Moving forwards, students have to study the displayed formula of glucose for two minutes without being able to note anything down before they are challenged to recreate what they saw in a test of their observational skills. At this point of the lesson, the idea of numbering the carbons is introduced so that the different glycosidic bonds can be understood in an upcoming lesson as well as the recognition of the different isomers of glucose. The difference between alpha and beta-glucose is provided but students do not need to consider the beta form until topic 4. The remainder of the lesson focuses on the roles of the monosaccharides and the final task involves a series of application questions where the students are challenged to suggest why ribose could be considered important for active transport and muscle contraction
Disaccharides (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Disaccharides (Edexcel Int. A-level Biology)

(0)
This lesson describes how monosaccharides are joined together during condensation reactions to form maltose, sucrose and lactose. The PowerPoint and accompanying resource have been designed to cover the third part of point 1.2 & 1.4 of the Edexcel International A-level Biology specification but also make links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as digestion, translocation in the phloem and the Lac Operon in the control of gene expression. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge and the mark schemes are included within the lesson PowerPoint so students can assess their understanding and address any misconceptions if they have arisen.
Eukaryotic cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Eukaryotic cells (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the ultrastructure of eukaryotic cells and the functions of each of the organelles in these cells. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 3.1, 3.2 & 3.3 of the Edexcel International A-level Biology specification and therefore this lesson also describes how all living organisms are made of cells and that these cells are organised into tissues, organs and organ system in multicellular organisms. As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all of the 8 topics in the Edexcel course and intricate planning has ensured that links to previously covered topics as well as upcoming ones are made throughout the lesson. The cell theory is introduced at the start of the lesson and the first 2 principles are explained. Students will see how epithelial cells are grouped together to form different types of epithelium in the respiratory tract and their prior knowledge of gas exchange at the alveoli from topic 2 is tested with a series of questions. The rest of the lesson uses a wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, to maintain motivation and engagement whilst describing the relationship between the structure and function of the following organelles: nucleus nucleolus centrioles ribosomes rough endoplasmic reticulum Golgi apparatus lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane All of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to go through all of the tasks
Ultrastructure of prokaryotic cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Ultrastructure of prokaryotic cells (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the ultrastructure of a prokaryotic cell and the function of the structures found in these cells. The engaging PowerPoint and accompanying resources have been designed to cover specification point 3.5 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and also compares these cells against the eukaryotic cells that were met in the previous lesson. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to recognise a prefix that they believe translates as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus and this acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce
Triglycerides, saturated & unsaturated lipids (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Triglycerides, saturated & unsaturated lipids (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes how a triglyceride is synthesised and describes the differences between saturated and unsaturated lipids. The engaging PowerPoint and accompanying resources have been designed to cover specification points 1.5 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and links are also made to related future topics such as the use of lipids as a substrate for respiration and the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in topic 1 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of lipids mean that these molecules have numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Capillaries, arteries & veins (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Capillaries, arteries & veins (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson explores how the structure of capillaries, arteries and veins relate to their functions. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 1.7 of the Edexcel International A-level Biology specification. This lesson has been written to build on any prior knowledge from iGCSE or earlier in this topic to enable students to fully understand each type of blood vessel has its particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of GUESS WHO is used to introduce smooth muscle and collagen as the substances that are found in the tunica media and externa and again the reason for their presence is explored and explained. The next part of the lesson looks at the role of the capillaries in exchange and links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. The remainder of the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. Valves are introduced and important mechanisms like the skeletal muscle pump are discussed to ensure that students can understand how the return of blood to the right atrium of the heart is maintained.
Haemoglobin & the Bohr effect (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Haemoglobin & the Bohr effect (Edexcel Int. A-level Biology)

(0)
This lesson describes the role of haemoglobin in transport and explains the change in the dissociation curve when there is an increased concentration of carbon dioxide (the Bohr effect). The detailed PowerPoint and accompanying resources have been designed to cover points 1.9 (i) & (ii) of the Edexcel International A-level Biology specification and this lesson also compares the oxyhaemoglobin dissociation curve of foetal haemoglobin against maternal haemoglobin. The lesson begins with a version of the quiz show Pointless and this introduces haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure as it is formed of 4 polypeptide chains which each contain a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. At this point, foetal haemoglobin and its differing affinity of oxygen is introduced and students are challenged to predict whether this affinity will be higher or lower than adult haemoglobin and to represent this on their dissociation curve. Moving forwards, the different ways that carbon dioxide is transported around the body involving haemoglobin are described and the dissociation of carbonic acid into hydrogen ions is discussed so that students can understand how this will affect the affinity of haemoglobin for oxygen in the final part of the lesson on the Bohr effect. A quick quiz is used to introduce Christian Bohr and the students are given some initial details of his described effect. This leads into a series of discussions where the outcome is the understanding that an increased concentration of carbon dioxide decreases the affinity of haemoglobin for oxygen. The students will learn that this reduction in affinity is a result of a decrease in the pH of the cell cytoplasm which alters the tertiary structure of the haemoglobin. The lesson finishes with a series of questions where the understanding and application skills are tested as students have to explain the benefit of the Bohr effect for an exercising individual.
Calculating biodiversity (Edexcel A level Biology A)
GJHeducationGJHeducation

Calculating biodiversity (Edexcel A level Biology A)

(0)
This fully-resourced lesson explains the meaning of biodiversity and describes how it can be calculated within a habitat and within a species. The engaging PowerPoint and accompanying resources have been designed to cover point 4.2 of the Pearson Edexcel A-level Biology A specification and in addition to biodiversity, the meaning of endemism is also explained. A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise key terms from their definitions. This quiz will introduce species, population, biodiversity, endemic, heterozygote and natural selection and each of these terms is put into context once introduced. Once biodiversity has been revealed, the students will learn that they are expected to be able to measure biodiversity within a habitat, within a species and within different habitats so that they can be compared. The rest of the lesson uses step by step guides, discussion points and selected tasks to demonstrate how to determine species richness, the heterozygosity index and an index of diversity. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise.
Classification hierarchy (Edexcel A level Biology B)
GJHeducationGJHeducation

Classification hierarchy (Edexcel A level Biology B)

(0)
This lesson describes the classification system that consist of a hierarchy of domain, kingdom, phylum, class, order, family, genus and species. The engaging PowerPoint and accompanying resource have been designed to cover point 3.1 (i) of the Edexcel A-level Biology B specification and also includes details of the use of the binomial naming system. The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a male horse and a female donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system.
Evolution, natural selection & adaptations (Edexcel A level Biology B)
GJHeducationGJHeducation

Evolution, natural selection & adaptations (Edexcel A level Biology B)

(0)
This fully-resourced lesson describes how evolution can come through natural selection and acts on variation to bring about adaptations. The PowerPoint and accompanying resources have been designed to cover specification points 3.2 (i) & (ii) of the Edexcel A-level Biology B specification and considers a range of different behavioural, anatomical and physiological adaptations. President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. The final part of the lesson focuses on the adaptations of the anteater and links are made to the topic of classification hierarchy which was covered at the start of topic 3… Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
Starch & cellulose (Edexcel A-level Biology A)
GJHeducationGJHeducation

Starch & cellulose (Edexcel A-level Biology A)

(0)
This detailed lesson describes the relationship between the structure and function of starch and cellulose. The engaging PowerPoint and accompanying resource have been designed to cover point 4.9 of the Pearson Edexcel A-level Biology A specification and focuses on the importance of the glycosidic and hydrogen bonds for the structure of these polysaccharides. The structure of amylose and amylopectin was described during a lesson in topic 1, so the start of this lesson challenges the students on their recall of these details. They have to complete a comparison table for these two polysaccharides by identifying the monomer and type of glycosidic bonds that are found in each of the structures. Time is taken to explain how the greater resistance to digestion of amylose means that this carbohydrate is important for plant energy storage whereas the multiple chain ends in the branched amylopectin means that this polysaccharide can be hydrolysed quickly when energy is needed. The rest of the lesson describes the structure of cellulose and focuses on the link between the structure and the need for this polysaccharide to support the plant cell as well as the whole plant. Students will see how every other beta glucose monomer is rotated by 180 degrees and will learn that hydrogen bonds form between these molecules on the same chain as well as between adjacent chains in a cellulose microfibril. The lesson concludes with a quick quiz competition where the students have to compete to open a safe using a combination made up of key values associated with glycogen, starch and cellulose.
Reproductive isolation, allopatric & sympatric speciation (Edexcel A level Biology B)
GJHeducationGJHeducation

Reproductive isolation, allopatric & sympatric speciation (Edexcel A level Biology B)

(0)
This fully-resourced lesson describes how reproductive isolation can lead to allopatric and sympatric speciation. The engaging PowerPoint and accompanying resources have been designed to cover point 3.2 (iii) of the Edexcel A-level Biology B specification. The lesson begins by using the example of a hinny, which is the hybrid offspring of a horse and a donkey, to challenge students to recall the biological classification of a species. Moving forwards, students are introduced to the idea of speciation and the key components of this process, such as isolation and selection pressures, are covered and discussed in detail. Understanding and prior knowledge checks are included throughout the lesson to allow the students to not only assess their progress against the current topic but also to make links to earlier topics in the specification. Time is taken to look at the details of allopatric speciation and how the different mutations that arise in the isolated populations and genetic drift will lead to genetic changes. The example of allopatric speciation in wrasse fish because of the isthmus of Panama is used to allow the students to visualise this process. The final part of the lesson considers sympatric speciation and again a wide variety of tasks are used to enable a deep understanding to be developed.
Cohesion-tension model (Edexcel A-level Biology B)
GJHeducationGJHeducation

Cohesion-tension model (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the cohesion-tension model explains the transport of water from the roots to the shoots. The detailed PowerPoint and accompanying resources have been designed to cover point 4.7 (iii) of the Edexcel A-level Biology B specification This lesson has been written to follow on from the end of the previous lesson, which finished with the description of the transport of the water and mineral ions from the endodermis to the xylem. Students are immediately challenged to use this knowledge to understand root pressure and the movement by mass flow down the pressure gradient. Moving forwards, time is taken to study the details of transpiration pull and then the main focus is the interaction between cohesion and tension. The role of adhesive forces in capillary action is also explained. Understanding is constantly checked through a range of tasks and prior knowledge checks are also written into the lesson to challenge the students to make links to previously covered topics such as the structure of the transport tissues.