Hero image

520Uploads

200k+Views

107k+Downloads

Water consumption
IETEducationIETEducation

Water consumption

(0)
Learn how mathematicians predict UK’s future water usage In this activity students will explore water consumption by looking at mathematical modelling and its real-world application in predicting water usage. Students will estimate their daily water consumption, interpret complex data, and apply their mathematical skills to understand why water usage is a significant issue. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design & technology (DT). This lesson plan follows on from Water Conservation and continues the theme of water usage developed in the Sewage Tunnels activity but can be delivered independently should the teacher wish. Activity: Comparing water usage within the UK to that of other countries In this activity, students start by estimating their daily water usage. They then delve into complex data from the Environment Agency, interpreting different scenarios and their potential impact on future water requirements. Students will develop their own spreadsheet tool, inspired by the one on the Southern Water website, to help others estimate their water usage. They’re encouraged to improve upon the existing tool and even write to the Water Board with their suggestions. Download our activity overview, presentation and worksheet for a detailed lesson plan for teaching students about water consumption. We also have a class quiz. The engineering context This activity highlights the intersection of mathematics, science, policy-making, and engineering in addressing real-world problems. By engaging in this activity, students will understand how engineers use mathematical models to predict future scenarios and develop solutions for sustainable water usage. They’ll see first-hand how engineering can make a significant impact on society and the environment. Suggested learning outcomes This lesson plan is designed to equip students with the ability to analyse and interpret a wide range of data, understand the application of mathematical modelling in real-world situations, and use their mathematical knowledge to review, recreate, and improve presented information. Students will also gain insights into the importance of water conservation and the challenges in meeting increasing water demands. Download our activity sheet for free! The lesson plan includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity worksheets and supporting lesson plan resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Seesaw scales
IETEducationIETEducation

Seesaw scales

(0)
Understanding levers and forces This STEM activity aims to develop children’s understanding of levers, specifically the seesaw class lever, one of the simplest forms of machine used to change the magnitude or direction of a force. Making a small seesaw model is a fun-filled way to introduce children to the concepts of levers and forces. By making simple levers, learners will grasp how the effort applied to a lever affects the load. This hands-on project not only sparks their curiosity but also encourages active learning. We’ve created this seesaw scale activity to support the teaching of key topics within design and technology (D&T), maths, and science as part of the primary national curriculum at key stage 2 (KS2). You can use it as a one-off activity or link it with a measurement activity in food technology. Activity: Making the lever Learners will make a simple lever assembly from a binder clip, ruler, two paper cups and sticky tape. Children will also be asked to use a lever to work out the force required to move a load. Learners will compare results and explain their findings. Depending on available resources, this activity could be carried out individually or in small teams. Tools/supplies needed: Rulers Large binder clips Paper cups Sticky tape Weights such as steel nuts, small weights from science or marbles The engineering context Engineers use their understanding of how the effort applied to a lever affects the load in designing a wide range of products. From weighing scales to control pedals in cars, nutcrackers, wheelbarrows, bottle openers, and scissors, levers find their application across various industries. By understanding the seesaw lever class, learners will gain a fundamental insight into the principles that govern these everyday objects. Suggested learning outcomes Through this activity, learners will gain the ability to identify the parts of a lever and understand how the effort applied to a lever affects the load. They’ll also understand the principle of balance in a seesaw lever and how distance from the fulcrum impacts the effort needed to move a load. This will equip them with the foundational knowledge about levers, a key component in KS2 science, and provide a practical context for understanding mathematical concepts like multiplication and equality. Download our activity sheet and other teaching resources for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so that you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation
Ancient Greek mathematics
IETEducationIETEducation

Ancient Greek mathematics

(0)
Learn scale with ancient Greek mathematics In this engaging activity for kids inspired by the achievements of ancient Greece, students will discover how to create a scale drawing of an object using ancient Greek mathematics. This activity, which combines maths and history, will introduce students to the concept of scale and teach students facts about how the ancient Greeks have affected modern life. Resources for teachers are provided. And please do share your classroom learning highlights with us @IETeducation
Edible snow - how to make marshmallow
IETEducationIETEducation

Edible snow - how to make marshmallow

(0)
This resource will tell you how to make your own marshmallow. But not only that, we will be learning about the science of baking, and how a small change to the mixture can make a big difference. Have you ever tried a marshmallow? They’re delicious! You will be surprised by the amount of maths and science that goes into making these lovely little treats. Working out what works well, what doesn’t, how many ingredients to use and ratios, are all packed into one fun resource. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions as a classroom lesson plan or to follow at home. Please do share your highlights with us @IETeducation. Oh ho ho, and please do share your poetry highlights with us @IETeducation! #SantaLovesSTEM
Investigating cast products
IETEducationIETEducation

Investigating cast products

(0)
What affects the properties of the material in a cast product? In this activity students will explore how changing the ratio of PVA glue to PoP (plaster of Paris) affects the strength of a composite material. They’ll test both tensile and compression strength to find the perfect mix. This activity is part of a series of resources designed to challenge the students by requiring them to apply the knowledge and understanding of engineering materials through a ‘batch’ production experience, including CAD design project , Investigating batch production, and Engineering design processes. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design and technology (D&T). Activity: What affects the properties of the material in a cast product? In this activity students will investigate how the proportion of PVA glue added to plaster of Paris (PoP) affects the properties of the material produced in a cast product. Students will work in pairs to create card moulds. They will then mix different ratios of PVA, PoP, and water, pouring each mixture into duplicate moulds. After the test strips dry overnight, they’ll conduct two types of strength tests: a tensile test (hanging weights) and a compression test (using a G-clamp). They’ll then be tasked with analysing the results to determine how PVA affects the material’s strength. Look for patterns and identify the optimal ratio of PVA to PoP. Finally, decide on the best ratio for your future casting projects and present your findings to the class, using graphs or tables to support your conclusions. Download our activity overview for a detailed lesson plan on CAD design. The engineering context As part of the production process, engineers and designers must test the properties of different materials in order to select the best materials for their products to ensure that they’re suitable (e.g., are they strong enough for the activity that they’ll be used for?). Suggested learning outcomes Students will be able to explain how to develop a product or material to improve the outcome (engineering materials). They’ll also learn how to set up an experiment that allows key decisions to be made from the outcome. Finally, they’ll be able to carry out a manufacturing and testing programme, understanding the importance of time allowance and quality control. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Water aqueduct shapes
IETEducationIETEducation

Water aqueduct shapes

(0)
Calculate the cross-sectional areas of different aqueducts to determine which is most effective In this STEM activity students will investigate different aqueduct shapes to determine which is the most efficient design. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and engineering. Activity: Calculating the cross-sectional areas of different aqueducts In this lesson, students must calculate the cross-sectional area of various aqueducts to determine which one is most effective in terms of least water lost via evaporation. Using our Aqueduct presentation, learners will be introduced to the engineering behind aqueducts by estimating the volume of water follow through the aqueduct in one second. Students will then calculate the cross-sectional areas of various aqueduct shapes, including rectangles and trapezoids. To do this, learners must apply their understanding trigonometry to find the missing side lengths. Alternatively, students can use this GeoGebra file to calculate the area of the trapezium. Download our activity overview for an introductory lesson plan on trigonometry for free! The engineering context Aqueducts are constructed to carry water across gaps such as valleys or ravines. In modern engineering, the term aqueduct is used for any system of pipes, ditches, canals, tunnels, and other structures used for this purpose. Aqueducts can be used to enable water to be transported to areas where it is in short supply. Suggested learning outcomes In this activity students will apply their knowledge of mathematics such as calculating the area of a rectangle and trapezium or the volume of a cuboid. They will also be able to specifically apply their knowledge of trigonometry. Finally, they’ll learn how to plot graphs using a table of values. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. You can download our classroom lesson plan for free!
Solar powered engine
IETEducationIETEducation

Solar powered engine

(0)
Making a model of an electric aircraft engine and calculating how long this could power an aircraft using solar energy. Under the future of flight theme, learners will make a model of an electric aircraft engine that uses solar-powered rechargeable batteries and a motor. They will then test their circuit to see if it works and calculate how long it can run for before it needs to be recharged. This activity could be used as a main lesson activity to teach about assembling models of circuits and the use of renewable energy. It could also be used as part of a wider scheme of learning to support focussed practical skills or about engineering career opportunities within the aviation sector. You will need Solar AA battery charger 2 x rechargeable AA batteries AA batteries connector/holder Red and black crocodile clips Slide or toggle switch Electric solar motor Atlas (for extension activity determining potential journey destinations) All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
How high will it go?
IETEducationIETEducation

How high will it go?

(0)
Find the height achieved by a flying object using trigonometry. In this activity learners will work out the height of a released balloon using a clinometer and trigonometry. This is one of a series of resources designed to allow learners to use the theme of the future of flight to develop their knowledge and skills in in Design and Technology, Engineering and Mathematics. This activity could be used as a main lesson activity to teach learners about the practical application of trigonometry. It could also be used as part of an introduction to the use of trigonometry within engineering. You will need: Thin card Balloons Balloon pump, if required Brass split pin paper fasteners Scissors Sharp pencils and erasers Calculators Tape measure All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Stop it: Design a system to slow a spaceship descent
IETEducationIETEducation

Stop it: Design a system to slow a spaceship descent

(0)
Develop a parachute-type system to slow a landing spacecraft. In this activity learners will make use of the theme of the future of flight to develop a parachute type system that will help a spacecraft to land and stop safely. They will be able to make design decisions contributing to the performance of their solution. They will then test their prototype to see how well it works. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Measuring noise
IETEducationIETEducation

Measuring noise

(0)
Measuring the amount of noise produced by different activities. In this activity learners will measure noise produced by a range of activities using a sound meter to help them understand how noise is measured and that high noise levels can damage our hearing. This activity could be used as a main lesson activity to teach learners about sound, as part of a scheme of learning covering sound waves and how sound is generated or as part of a wider topic area covering health and safety considerations in the workshop. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Flying high
IETEducationIETEducation

Flying high

(0)
Calculating the amount of energy needed to launch a rocket into space. In this activity learners will make use of the theme of the future of flight to calculate the amount of energy needed to launch a space rocket. They will discuss the meaning of the term escape velocity and then perform calculations based on the Space X and Saturn V rockets. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Magic Square puzzles
IETEducationIETEducation

Magic Square puzzles

(0)
This engaging magic square puzzle activity for KS1 delves into the realm of number arrangements and challenges students to uncover the magic hidden within these intriguing square grids. This activity is one of a set of free STEM resources developed to support teaching the primary national curriculum and key topics within maths and science. This resource focuses on developing the ability to add numbers using Magic Square grids. This activity could be used as a starter or main activity to introduce maths problem solving using addition. Learners could complete it in pairs or small groups. Although this activity is designed to be carried out in a playground (which has the advantages of scale and allows chalk to be removed), it could equally be done on paper in a classroom. How long will this activity take? This activity will take approximately 35-60 minutes to complete. Download the worksheets below for a handy step-by-step guide and lesson plan. What are magic squares? Magic squares are intriguing mathematical arrangements of numbers within a square grid, where the sum of the numbers in each row, column, and diagonal is the same. Each number is unique within the square, and the challenge lies in finding the right arrangement to achieve the magical property. Magic squares have a long history dating back to ancient times and have captivated mathematicians and enthusiasts alike. They possess symmetrical and symmetrically complementary patterns, adding to their aesthetic appeal. Magic squares can vary in size, from 3x3 grids to larger ones, presenting a wide range of complexity and opportunities for exploration within recreational mathematics. The engineering context Engineers need to solve several puzzling problems when designing products. For example, chemical engineers must determine the amount and combination of ingredients required to create tasty and effective toothpaste. Suggested learning outcomes By the end of this activity, students will be able to solve Magic Square problems using addition, they will be able to add small numbers by mental arithmetic, and they will be able to create Magic Square grids of varying sizes and difficulty. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Practical probability
IETEducationIETEducation

Practical probability

(0)
In this engaging activity, students will investigate the likelihood of selecting different fruits based on the number of each type in the bag, and they will examine the concept of probability, exploring how it relates to ‘chance’. Through observation and careful analysis, learners will gain a solid understanding of probability and its application in real-world scenarios, developing their ability to make educated predictions, estimate outcomes and making informed decisions. This activity is one of a set of STEM resources developed to support teaching the primary national curriculum and the delivery of key topics within maths and science. This resource focuses on probability. This activity serves as an excellent main lesson to introduce learners to the fundamental concepts of probability. As they delve into the calculations and reasoning involved, learners will sharpen their probability skills and enhance their grasp of numerical concepts such as ratios and proportions. By the end of this activity, participants will emerge with a strengthened ability to work out and comprehend probabilities while reinforcing their overall number skills. So, get ready to dive into probability, where every fruit-filled selection unveils a fascinating lesson in chance and uncertainty. How long does this activity take? This activity takes approximately 30-40 minutes to complete. Download our fun probability experiment worksheet below to begin. The engineering context Probability is important to engineers as it examines the likelihood of an event happening so that risks can be reduced. For example, a rail engineer will test the train tracks for a new high-speed train to reduce the probability of failure. Suggested learning outcomes By the end of this activity, students will be able to calculate the probability of picking an item of fruit from a bag. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Times table bingo
IETEducationIETEducation

Times table bingo

(0)
**In this thrilling times table bingo game, we combine the excitement of bingo with the challenge of mastering multiplication. ** Students race against the clock to quickly identify the correct number on the bingo cards as the teacher calls out different multiplication problems to solve. They need to be prepared to think fast and strategise to complete lines and patterns or even achieve a full-house victory! Whether a beginner or a times table whiz, this game is an entertaining way to reinforce time tables knowledge. Activity This activity is one of a series of accessible STEM resources to support teaching the primary national curriculum and key topics within maths and science. In this activity, learners will solve a series of multiplication problems read out by the teacher. They will use these answers to play bingo, aiming to complete their given card with their responses; this will improve and reinforce learners’ multiplication skills in a fun and engaging context. Learners could play in small teams, pairs or as individuals. Students who win each round of the game could win a prize as a reward and an incentive to other learners. This multiplication bingo game could be used as a starter activity covering learning from a previous lesson, a plenary exercise reinforcing learning that has just occurred, or as one of several activities within a wider scheme of learning focusing on multiplication and division. How long will this activity take? This activity will take approximately 25-40 minutes to complete. Download the free handouts below for step-by-step guides and printable bingo cards. Suggested learning outcomes By the end of this activity, students will be able to multiply numbers together using the 2-, 5- and 10-times tables, they will be able to solve multiplication problems using mental arithmetic, and they will be able to use correct mathematical statements and terminology relating to multiplication problems. The engineering context Engineers must use mathematics knowledge and skills regularly as part of their job. For example, calculating the strength of a material, the speed of a vehicle, the sizes of products or quantities of parts needed. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Measuring time - KS1 maths
IETEducationIETEducation

Measuring time - KS1 maths

(0)
In this engaging experiment, students will learn how to measure time by recording the time it takes to complete a walking race where the winner is the last person to cross the line, not the first! This resource is part of a series created to support the primary national curriculum. Its purpose is to aid in teaching essential topics in mathematics and science. Activity In this particular activity, students will participate in a slow walking race and measure the time it takes to complete it. Working in small teams, they will use stopwatches to time each other and record the data. The collected results will be organised and discussed as a class, using terms such as faster, slower, and quicker. This activity serves as a central lesson to teach students how to gather data through measurement and apply their numerical skills in a practical setting. It can also be utilised as one of several activities within a broader learning framework emphasising using mathematics and science to comprehend time measurement. This activity is suitable for groups of 4 or more participants and can be conducted in various settings such as the classroom, hall, or outdoors. The distance for the slow walk race can be adjusted to accommodate the available space, with a recommended length of 5 meters. It is ideal to mark the start and finish lines using tape or any suitable material within the available space. Before starting the activity, ensure that the learners understand how to properly operate the stopwatches, including starting, stopping, and resetting functions. The teacher should provide a demonstration in advance to ensure clarity. How long will this activity take? This activity will take approximately 40-60 minutes to complete. Download the activity sheet below for a step-by-step lesson plan. The engineering context Accurate timing plays a crucial role for robotics engineers. They must determine the speed range at which two-legged robots can walk without losing balance. These engineers design robots to assist astronauts in space missions and perform demanding tasks like heavy lifting in factory settings. Suggested learning outcomes By the end of this activity, students will be able to measure the time it takes to finish a race, they will be able to sort and compare time data, and they will be able to use the terms faster/slower to describe the time result of the race. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Puff pastry pizza swirls recipe
IETEducationIETEducation

Puff pastry pizza swirls recipe

(0)
Design and make puff pastry pizza swirls with a STEM twist. Puff pastry pizza swirls recipe - easy and fun to do with 4-11 year olds! This can be done as part of a food tech lesson or at home, as the activity is all mapped to the UK curricula for you - download for free below. This is one of a series of resources designed to allow learners to use the theme of celebration to develop their knowledge and skills in Design & Technology. This resource focuses on the designing and making of a food item to serve at a street party celebrating the occasion. This activity could be used as a main lesson activity to teach sketching design ideas and preparing food products for particular events. It could also be used as part of a wider scheme of learning to support focused practical skills within food lessons or – through measuring and weighing ingredients – to support the development of basic mathematical skills. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation
Gingerbread man STEM challenge
IETEducationIETEducation

Gingerbread man STEM challenge

(0)
Explore maths with gingerbread men, and find out how many combinations of buttons are possibilities. This is a simple maths game for KS1 and KS2 mathematics, as a curriculum mapped activity to do at school or home. This activity in partnership with MEI is a ‘finding all possibilities’ type of problem. It encourages children to work systematically to ensure they know when all the solutions have been found, as well as ensuring they haven’t made any two gingerbread men look exactly the same. A strategy that will be promoted is the idea of fixing one of the variables, in this case one of the buttons, whilst changing the others in turn. To ensure they become confident talking about their maths, ask the children to work in pairs if possible in a classroom or at home. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
Density using Archimedes' principle
IETEducationIETEducation

Density using Archimedes' principle

(0)
Work out the density of materials This activity for primary kids gives them an opportunity to work out the density of a material using Archimedes’ principle, an ancient Greek mathematician. Combining maths and science, students will learn how to collect data through experimenting and understand the properties of materials. This activity will test students’ number abilities and teach them historical facts about ancient Greece. Resources are provided for teachers. And please do share your classroom learning highlights with us @IETeducation
Using Pythagoras Theorem
IETEducationIETEducation

Using Pythagoras Theorem

(0)
Use Pythagoras Theorem to measure objects In this activity for kids, students will be introduced to the concept of the Pythagoras Theorem and what it is used for. They will use this knowledge to create a string triangle in the proportion of 3:4:5 and use it to measure objects from their base. This activity will test students’ maths abilities and teach them historical facts about ancient Greece. Resources for teachers are available. And please do share your classroom learning highlights with us @IETeducation
Maths tea party - fun maths game for kids
IETEducationIETEducation

Maths tea party - fun maths game for kids

(0)
Position the tea party items into a square grid so that each row and column contains one of each Children’s maths games make learning fun! Download our five activities for free, and go through each one in turn to make up this fun maths lesson for 5 to 11 year olds. The aim is to position different coloured items into a square grid so that each row and column contains one of each. The purpose of this activity is to explore problem solving strategies including trial and improvement, pattern spotting and using known strategies to tackle a new problem. This lesson links to a 200-year-old maths puzzle and also to Latin Squares or Euler Squares which form the basis of popular Sudoku puzzles. There is also the opportunity to explore rotation and symmetry and to use these as problem solving strategies. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.