Hero image

Engaging science Shop

Average Rating4.82
(based on 46 reviews)

I have been teaching for 10 years both as a Biology/Chemistry/Pychology teacher and as a Head of department. I have experience teaching in both international schools and state comprehensives.

167Uploads

27k+Views

15k+Downloads

I have been teaching for 10 years both as a Biology/Chemistry/Pychology teacher and as a Head of department. I have experience teaching in both international schools and state comprehensives.
IB Biology A2.1: Origins of cells (First Exams 2025)
AmenghisAmenghis

IB Biology A2.1: Origins of cells (First Exams 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A2.1 Origins of cells in the new IB Biology specification for HL only. This Powerpoint consists of 40 slides and contains the followings: All the information (both SL and HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student questions with answers Clearly identified HL and SL content Student checklist The following content is included: • A2.1.1: Conditions on early Earth and the formation of prebiotic Carbon. •A2.1.2: Cells as the smallest units of self sustaining life •A2.1.3: Challenge explaining the spontaneous origin of cells. •A2.1.4: Evidence for the origin of carbon compounds •A2.1.5: Spontaneous formation of vesicles by the coalescences of fatty acids to form spherical bilayers •A2.1.6: RNA as a presumed first genetic material •A2.1.7: Evidence for a last common ancestor •A2.1.8: Approaches used to estimate the dates of first living cells under the last universal common ancestor. •A2.1.9: Evidence for the evolution of the last common ancestor in the vicinity of hydrothermal vents.
IB Biology: B1.2 Proteins (first exams in 2025)
AmenghisAmenghis

IB Biology: B1.2 Proteins (first exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the B1.2 Proteins in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of 55 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content The following content is included: B1.2.1: Generalised structure of an amino acid. B1.2.2: Condensation reactions produce dipeptides and longer polypeptides. B1.2.3: Dietary requirements of amino acids B1.2.4: Infinite possible variety of polypeptide chains B1.2.5: Effects of pH and temperature on proteins structure. B1.2.6: chemical diversity in the R-groups of amino acids is the basis for the immense diversity in protein structures (HL only) B1.2.7: Impact of the primary structure on the conformation of proteins (HL only) B1.2.8: Pleating and coiling of secondary structure of proteins (HL only) B1.2.9: Dependence of tertiary structure on hydrogen bonds, ionic bonds, disulphide covalent bonds and hydrophobic interactions (HL only) B1.2.10: Effects of polar and non-polar amino acids on the tertiary structure (HL only) B1.2.11: Quaternary structure of conjugated and non-conjugated proteins (HL only B1.2.12: Relationships of form and function for globular and fibrous proteins (HL only)
IB Biology: B1.1 Carbohydrates and Lipids (first exams in 2025)
AmenghisAmenghis

IB Biology: B1.1 Carbohydrates and Lipids (first exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach Theme/Unit B1.1 Carbohydrates and Lipids in the new IB Biology specification. This Powerpoint consists of 99 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content The following content is included: B1.1.1: Chemical properties of Carbon atoms allowing for the formation of diverse compounds upon which life is based. B1.1.2: Production of macromolecules by condensation reactions which link monomers to form polymers. B1.1.3: Digestion of polymers into monomers via hydrolysis reactions. B1.1.4: Form and function of monosaccharides. B1.1.5: Polysaccharides as a energy storage compound. B1.1.6: Structure of cellulose related to its function in plants. B1.1.7: Role of glycoproteins in cell recognition B1.1.8: Hydrophobic properties of water. B1.1.9: Formation of triglycerides and phospholipids by condensation reactions. B1.1.10: difference between saturated, monounsaturated and polyunsaturated fatty acids. B1.1.11: Triglycerides in adipose tissue as a storage of energy and insulation. B1.1.12: Formation of the phospholipid bilayer due to the hydrophobic and hydrophilic regions of phospholipids B1.1.13: The ability of steroid hormones to pass through phospholipid bilayers.
IB Biology D2.3: Water Potential  (first exams in 2025)
AmenghisAmenghis

IB Biology D2.3: Water Potential (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D2.3: Water Potential in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 45 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D2.2.1: Explain how water is able to dissolve many substances D2.2.2: Explain the movement of water from less concentrated to more concentrated solutions. D2.2.3: Predict the net movement of water based on the environment of a cell. D2.2.4: Outline the changes that occur to plant tissues bathed in hypotonic and hypertonic solutions. D2.2.5: Explain the effects of water movement into and out of cells on cells that lack a cell wall. D2.2.6: Explain the effects of water movement into and out of cells on cells that have a cell wall. D2.2.7: Outline medical applications of isotonic solutions. D2.2.8: Define the term water potential. D2.2.9: Explain the direction that water moves in terms of water potential. D2.2.10: Explain how solute potential and pressure potential affect the water potential within cells. D2.2.11: Explain the changes that occur when a plant tissue is bathed in either a hypotonic or hypertonic solution in terms of solute and pressure potentials.
IB Biology D2.2: Gene expression HL only (first exams in 2025)
AmenghisAmenghis

IB Biology D2.2: Gene expression HL only (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D2.2: Gene expression (HL only) in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 40 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D2.2.1: Explain the term gene expression. D2.2.1: Outline how transcription can be regulated by proteins that bind to DNA. D2.2.1: Outline how translation can be regulated through the degradation of mRNA. D2.2.1: Explain the term epigenesis. D2.2.1: Describe the differences between the genome, transcriptome and proteome of individual cells. D2.2.1: Outline how methylation can affect gene expression. D2.2.1: Identify why some epigenetic changes are heritable. D2.2.1: Describe examples of how the environment can affect gene expression. D2.2.1: Outline consequences of removing epigenetic tags from human gametes. D2.2.1: Discuss the use of monozygotic twins to study gene expression. D2.2.1: Describe examples of external factors that can impact gene expression.
IB Biology A1.2 Nucleic acid (First exams in 2025)
AmenghisAmenghis

IB Biology A1.2 Nucleic acid (First exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A1.2 nucleic acids in the new IB Biology specification for both HL and SL. This Powerpoint consists of 63 slides and contains the followings: All the information (both SL and HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student questions with answers Clearly identified HL and SL content Student checklist The following content is included: A1.2.1: DNA is the universal genetic material of all living organisms. A1.2.1: The structure of a nucleotide A1.2.3: Sugar-phosphate backbone/bonding of DNA and RNA A1.2.4: Bases in DNA and RNA A1.2.5: RNA as a polymer of nucleotides formed by condensation reactions. A1.2.6: Structure of the DNA double helix A1.2.7: Differences between DNA and RNA A1.2.8: Importance of complementary base pairing A1.2.9: Limitless capacity of DNA to store genetic information A1.2.10: Conservation of the genetic code (evidence for common ancestry) A1.2.11: Directionality of DNA and RNA (HL only) A1.2.12: Purine to Pyrimidine base pairing (HL only) A1.2.13: Structure of the nucleosome (HL only) A1.2.14: Hershey-Chase experiment: Evidence of DNA as a genetic material (HL only) A1.2.15: Chargaff´s rule: relative amounts of purine´s and pyrimidine´s (HL only)
IB Biology A2.2: Cell strcture (First Exams 2025)
AmenghisAmenghis

IB Biology A2.2: Cell strcture (First Exams 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A2.2 Cell Structure in the new IB Biology specification for both HL and SL. This Powerpoint consists of 114 slides and contains the followings: All the information (both SL and HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student questions with answers Clearly identified HL and SL content Student checklist The following content is included: A2.2.1: cells as the basic structural unit of life. A2.2.2: Microscopy skills A2.2.3: Development of microscopes A2.2.4: Structures which are common to cells in all living things A2.2.5: Structure of prokaryotic cells A2.2.6: Eukaryotic cell structure A2.2.7: Processes of life in unicellular organisms A2.2.8: Differences in eukaryotic cell structure between animal, fungi and plants A2.2.9: Atypical structures in eukaryotes A2.2.10: Cell types and structures viewed in light and electron microscopes A2.2.11: Drawing and annotating based on electron micrographs. A2.2.12: Origin of eukaryotic cells by endosymbiosis A2.2.13: Cell differentiation as the process for developing specialised tissues in organisms Note: Please review and provide feedback
IB Biology D1.3: Mutations and gene editing (first exams in 2025)
AmenghisAmenghis

IB Biology D1.3: Mutations and gene editing (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D1.3: Mutations and gene editing in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 50 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D1.3.1: Explain that gene mutations are structural changes to genes at the molecular level. D1.3.2: Outline the consequences of base substitutions. D1.3.3: Outline the consequences of insertions and deletions. D1.3.4: Recall that gene mutations can be caused by mutagens and by errors in DNA replication or repair. D1.3.5: Explain that mutations can occur anywhere in the base sequences of a genome. D1.3.6: Explain the effects of gene mutations occurring in germ cells and somatic cells. D1.3.7: Recognise that gene mutation is the original source of all genetic variation. D1.3.8: Outline that gene knockout is a technique for investigating the function of a gene by changing it to make it inoperative. D1.3.9: Explain the use of the CRISPR sequences and the enzyme Cas9 in gene editing. D1.3.10: Describe the hypotheses for conserved or highly conserved sequences in genes
IB Psychology: Enculturation
AmenghisAmenghis

IB Psychology: Enculturation

(0)
This PowerPoint contains everything you need to teach the Enculturation in the sociocultural approach unit of IB Psychology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint contains the followings: All the information the IB have included in the new spec. Clear diagrams Extended writing question Student research tasks *** Student workbook which accompanies the lessons ** Content included: Emic and etic perspectives Universalistic and relativistic perspectives Enculturation explained Gate keepers Enculturation links to conformity, SIT and memory Key case studies on enculturation and social learning theory Key case studies on enculturation and gender roles
IB Biology D1.2: Protein synthesis (first exams in 2025)
AmenghisAmenghis

IB Biology D1.2: Protein synthesis (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D1.2 Protein synthesis in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 60 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D1.2.1:Describe transcription as the synthesis of RNA using DNA as a template. D1.2.2: Describe the use of hydrogen bonding and complementary base pairing in transcription and the replacement of thymine with uracil in RNA. D1.2.3: Describe how DNA is used as a template for transcription, remains stable and unchanged. D1.2.4: Explain the use of transcription and its control of gene expression. D1.2.5: Describe translation as the use of the mRNA produced in transcription to synthesise polypeptides. D1.2.6: Describe the roles of mRNA, ribosomes and tRNA in translation. D1.2.7: Describe complementary base pairing between the codons on mRNA and the anticodons on tRNA. D1.2.8: Explain the main features of degeneracy and universality of the genetic code. D1.2.9: Deduce the sequence of amino acids from an mRNA strand using a table of mRNA codons. D1.2.10: Describe the elongation process of translation. D1.2.11: Describe how a point mutation can affect the polypeptide produced. D1.2.12: Describe the directionality of transcription and translation as 5′ to 3′. D1.2.13: Describe the role of the promoter in transcription and how the binding of transcription factors to the promoter initiate transcription. D1.2.14: Explain the roles of non-coding regions of DNA. D1.2.15: Explain post-transcriptional modification of mRNA in eukaryotes. D1.2.16: Describe how alternative splicing can produce variants of a protein. D1.2.17: Describe the initiation stage of translation. D1.2.18: Describe the modification of polypeptides to their functional state using pre-proinsulin to insulin as an example. D1.2.19: Describe the recycling of amino acids by proteasomes
IB Biology D1.1: DNA replication (first exams in 2025)
AmenghisAmenghis

IB Biology D1.1: DNA replication (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D1.1 DNA replication in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 80 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D1.1.1: Describe DNA replication as the process by which exact copies of DNA are created for use in reproduction, growth and tissue replacement in multicellular organisms. D1.1.2: Explain the semi-conservative nature of DNA replication and how it allows for a high degree of accuracy when copying base sequences. D1.1.3: Describe the roles of helicase and DNA polymerase in DNA replication. D1.1.4: Describe the use of polymerase chain reaction and gel electrophoresis for amplifying and separating DNA. D1.1.5: Describe the applications for PCR and gel electrophoresis. D1.1.6: Describe the directionality of DNA polymerases based on the difference between the 5ʹ and 3ʹ terminals of strands of nucleotides. D1.1.7: Describe replication on both the leading and lagging strands and how these differ. D1.1.8: Describe the functions of DNA primase, DNA polymerase I, DNA polymerase III and DNA ligase in replication of prokaryotic DNA. D1.1.9: Explain DNA polymerase III’s role as a proofreader of replicated DNA
IB Psychology:  Pheromones & behaviour
AmenghisAmenghis

IB Psychology: Pheromones & behaviour

(0)
This PowerPoint contains everything you need to teach the pheromones and behavior in the biological approach unit of IB Psychology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint contains the followings: All the information the IB have included in the new spec. Clear diagrams Extended writing question Student research tasks Student workbook which accompanies the lessons Content included: What are pheromones? How do Pheromones work? Do humans produce pheromones? Research studies into pheromones: attractiveness, mating & infant suckling.
IB Biology C1.3: Photosynthesis (first exams in 2025)
AmenghisAmenghis

IB Biology C1.3: Photosynthesis (first exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit C1.3 Photosynthesis in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of over 50 slides and contains the followings: All the information the IB have included in the new spec. Exam tips Clear diagrams Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: C1.3.1: Explain how the energy transformation of light energy to chemical energy is needed for most life processes in ecosystems. C1.3.2: Describe photosynthesis as the conversion of carbon dioxide to glucose. C1.3.3: Describe the production of oxygen as a by-product of photosynthesis. C1.3.4: Describe the process of chromatography for separating pigments and the use of Rf values to identify pigments. C1.3.5: Describe and explain the absorption of different wavelengths of light by photosynthetic pigments. C1.3.6: Compare absorption and action spectra C1.3.7: Determine through investigation the effects of limiting factors on the rate of photosynthesis. C1.3.8: Describe carbon dioxide enrichment experiments as a means of predicting future rates of photosynthesis and plant growth. C1.3.9: Describe photosystems as arrays of pigments within membranes of photosynthetic organisms that generate and emit excited electrons. C1.3.10: Explain the advantage that an array of pigments in a photosystem has over individual pigment molecules. C1.3.11: Describe the photolysis of water in terms of a means of replacing lost electrons in photosystem II and the production of oxygen as a waste product. C1.3.12: Describe the production of ATP by chemiosmosis through both cyclic and non-cyclic photophosphorylation. C1.3.13: Describe the reduction of NADP by photosystem I. C1.3.14: Explain the importance of the thylakoids as the site of photolysis, chemiosmosis and reduction of NADP. C1.3.15: Describe  carbon fixation by Rubisco and the significance  of Rubisco as an enzyme. C1.3.16: Describe the process of generating triose phosphate using ATP and reduced NADP. C1.3.17: Describe the regeneration of RuBP and the completion of the Calvin Cycle using ATP. C1.3.18: Describe the production of a variety of carbon compounds from photosynthesis. C1.3.19: Explain the link between the light-dependent and light-independent reactions and how the light-independent reactions cannot continue in the absence of light.
IB Psychology: The amygdala & memory
AmenghisAmenghis

IB Psychology: The amygdala & memory

(0)
This PowerPoint contains everything you need to teach the amygdala & memory in the cognitive approach unit of IB Psychology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint contains the followings: All the information ( HL) the IB have included in the new spec. Clear diagrams Videos Extended writing question Student research tasks Student workbook which accompanies the lessons Content included: The role of the amygdala & hippocampus Independent roles of the amygdala and hippocampus in memory The effects of emotions on memory Key case studies looking into how emotions effect memory Summary
IB Psychology: Flashbulb memories
AmenghisAmenghis

IB Psychology: Flashbulb memories

(0)
This PowerPoint contains everything you need to teach the flashbulb memories in the cognitive approach unit of IB Psychology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint contains the followings: All the information ( HL) the IB have included in the new spec. Clear diagrams Extended writing question Student research tasks Student workbook which accompanies the lessons Content included: What is a flashbulb memory? Several case studies investigating flashbulb memories. Exploring rehearsal and encoding in flashbulb memories Exam style question on emotions memory.
IB Psychology: Reconstructive memory
AmenghisAmenghis

IB Psychology: Reconstructive memory

(0)
This PowerPoint contains everything you need to teach reconstructive memory in the cognitive approach unit of IB Psychology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint contains the followings: All the information ( HL) the IB have included in the new spec. Clear diagrams Videos Extended writing question Student research tasks Student workbook which accompanies the lessons
IB Psychology: Biases in thinking and decision making
AmenghisAmenghis

IB Psychology: Biases in thinking and decision making

(0)
This PowerPoint contains everything you need to teach Biases in thinking and decision making in the cognitive approach unit of IB Psychology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint contains the followings: All the information ( HL) the IB have included in the new spec. Clear diagrams Videos Extended writing question Student research tasks Student workbook which accompanies the lessons
IB Psychology: Conformity and factors affecting conformity
AmenghisAmenghis

IB Psychology: Conformity and factors affecting conformity

(0)
This PowerPoint contains everything you need to teach Conformity and factors affecting conformity in the sociocultural approach unit of IB Psychology specification (the individual and the group). YouTube video is a preview of the full resource (does not include all slides) This Powerpoint contains the followings: All the information ( HL) the IB have included in the new spec. Clear diagrams Videos Extended writing question Student research tasks Student workbook which accompanies the lessons
IB Psychology: Stereotypes and their effects
AmenghisAmenghis

IB Psychology: Stereotypes and their effects

(0)
This PowerPoint contains everything you need to teach Stereotypes and their effects in the sociocultural approach unit of IB Psychology specification (the individual and the group). **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint contains the followings: All the information ( HL) the IB have included in the new spec. Clear diagrams Videos Extended writing question Student research tasks **Student workbook which accompanies the lessons ** Content covered includes: Key definitions Case studies Sherif´s experiments of group dynamics and stereotypes Impacts of stereotypes 4 key approaches to understanding stereotypes Positive stereotypes Evaluating research into stereotypes
IB Psychology: Social Cognitive theory
AmenghisAmenghis

IB Psychology: Social Cognitive theory

(0)
This PowerPoint contains everything you need to teach Social cognitive theory in the sociocultural approach unit of IB Psychology specification (the individual and the group). **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint contains the followings: All the information ( HL) the IB have included in the new spec. Clear diagrams Videos Extended writing question Student research tasks **Student workbook which accompanies the lessons ** Content covered includes: Key terminology Self-efficacy Elements of social cognitive theory Triadic reciprocal causation Bandura 1961 case study: Results and conclusions Applications of social cognitive theory