524Uploads
219k+Views
118k+Downloads
Physics
Measure time with a water clock
Make a water clock to measures time
In this fun activity for kids, students will learn how water can measure time using principles from ancient Greece.
They will then create a Greek water clock that can be used to measure a set period. This activity will test students’ maths abilities and teach them historical facts about ancient Greece. Resources are provided for teachers.
And please do share your classroom learning highlights with us @IETeducation
Human robotic arm design
Exploring the movement of a human arm for robotics design
This is an engaging starter activity in which students examine how human arms move. Learners will also discover how this movement can be replicated with a mechanical arm using a smart material. Students can then subsequently use this information to support the design of a robot arm.
This lesson can be followed by 3D modelling, which looks at designing and modelling a 3D robot arm and build a robot arm, which looks at how to make a robot arm with carboard.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science (specifically biology), engineering and design & technology (D&T).
Activity: Exploring the movement of a human arm for robotics design
By examining the movement of their own arms, students will learn how robot arms might be designed and how smart materials can play a role.
Students will first bend their arms and be asked to monitor and describe the mechanics involved (muscles, joints, etc.). They will then consider how this natural bending motion can inspire the design of robot arms. Learns will be introduced to shape memory alloy (SMA) springs, which can be deformed or stretched and then revert back to their original shape when heated (this can be achieved using an electrical current).
Finally, students will be tasked with explaining how SMAs could be used to create movement in a robot arm.
Download our activity overview for a detailed lesson plan on the movement of a human arm.
The engineering context
Robot arms are an example of a programmable system. They are used in a wide variety of industrial applications, ranging from assembling cars to spray-painting products. They’re also used in more dangerous applications for humans such as bomb disposal and repairing space craft as they orbit the earth.
Suggested learning outcomes
Students will learn that a human arm moves due to the contraction of muscles, and they’ll understand that a robot arm can also use contraction or rotation to achieve movement. Finally, they’ll learn that shape memory alloys can revert to a previous shape when heated.
Download our activity sheet and related teaching resources for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
Magnetic maze STEM challenge
Making a maze game from a bottle and a magnet
Learners will draw a maze layout on a plastic bottle and use a magnet to guide objects, such as a 1p coin, around the maze. This is a fun STEM challenge that will teach students about how magnets attract certain materials and will show them how to apply this knowledge in an engaging and practical way.
This resource could be used as a one-off activity or as part of a wider unit of work focussing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University.
Activity: Magnetic maze STEM challenge
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on developing understanding of magnetic materials by producing a maze game.
This activity could be completed as individuals or in small groups depending on the equipment that is available.
As an optional extension students could replace the coin with a ball bearing, a paper clip, a plastic coin and a small piece of wood. Which ones work well and which do not?
Students could also draw different maze layouts and use different sized bottles to create a range of puzzle products! Alternatively, students could compete with their friends to see who can complete the maze the fastest by timing themselves with stopwatches.
Tools/resources required
Pre-made exemplar
Magnets
1 pence coins (post 1992)
Plastic drinks bottles
Paper clips (for extension activity)
Ball bearings (for extension activity)
Plastic coins (for extension activity)
Small pieces of wood (for extension activity)
Different coloured marker pens
Stopwatches (for extension activity)
The engineering context
Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems.
Suggested learning outcomes
By the end of this exercise students will have an understanding of what makes a material magnetic, they will be able to give examples of magnetic and non-magnetic materials and they will be able to make a maze game using a bottle and a magnet.
Download the activity sheets for free!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Static electricity experiment (KS2)
Using static electricity to make tissue paper cats ‘pounce’ onto a balloon
This is one of a set of free STEM resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on making tissue paper cats ‘pounce’ and stick to a balloon through the build-up of static electricity.
This activity could be used as a main activity to introduce the concept of static electricity, or as one of several activities within a wider scheme of learning focusing on electricity and its uses.
Learners will first cut their tissue paper into small cat shapes. They could use different coloured tissue paper to make different coloured cats for more visual interest.
Learners will then blow up and tie their balloons. The balloon should be blown up fully and tied so that no air can escape. If learners struggle to do this, the teacher could complete this step in advance. Alternatively, clips could be provided to seal the balloons.
Learners will rub their balloon against their jumper several times to ‘charge’ it with static electricity. Following this, they can hold their balloon just above their tissue paper cat shapes. The cats should ‘pounce’ onto the balloon and stick to it.
Why do you think the cats ‘pounce’ and stick to the balloon? How close does the balloon need to be for the cats to pounce? What is causing this to happen?
This activity will take approximately 30-50 minutes to complete.
Tools/resources required
Balloons
Tissue paper
Scissors
The engineering context
Engineers use knowledge of science concepts in their everyday work to ensure they produce solutions that are safe, functional and meet the needs of their clients. A good grasp of basic concepts, such as how electricity and static electricity works, is therefore very important.
Electrical engineers use their knowledge of how electricity works to develop new electrical products and systems.
Suggested learning outcomes
By the end of this activity students will have an understanding of the causes and effects of static electricity, they will understand how to use a balloon and a jumper to create static electricity and they will know that static electricity can be used to make paper stick to a balloon.
Download the Static electricity experiment activity sheets for free!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Wearable antennas
Learning about how wireless technology can used for personal health care
In this activity students will discover how wireless electronic systems can be used to improve health care.
This topic investigates the driving technology behind body centric communications. Students will explore current health applications of wireless health care devices and learn about the possibilities for the future as well as the ethical issues surrounding these advancements.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT) and science.
Activity: Learning about how wireless technology can used for personal health care
Students will firstly work through our Pacemaker case study, where they must explain why someone with a pacemaker needs to be cautious around certain sources of radiofrequency energy. They will then draw a labelled diagram of a heart, pacemaker, and connecting wire (BCA), with annotations explaining how the pacemaker helps with heart problems.
Students will then review our Body Centric Antenna (BCA) case study where a BCA increases the speed at which data can be made available to health professionals. After reading the case study, students must produce then a short leaflet that explains the potential health benefits of BCAs.
Download our activity overview for an introductory lesson plan on wearable healthcare technology for free!
The engineering context
Body centric communications have abundant applications in personal healthcare, smart homes, personal entertainment, identification systems, space exploration and the military.
Suggested learning outcomes
By the end of this activity students will understand that an electronic decision-making system consists of an input, a processor, and an output. They will also know that changes in physical factors will result in an energy transfer in a transducer (i.e., a transducer can be used as a sensor). Finally, they will be introduced to some of the social uses of electronic systems in health care.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation
Measuring noise
Measuring the amount of noise produced by different activities.
In this activity learners will measure noise produced by a range of activities using a sound meter to help them understand how noise is measured and that high noise levels can damage our hearing.
This activity could be used as a main lesson activity to teach learners about sound, as part of a scheme of learning covering sound waves and how sound is generated or as part of a wider topic area covering health and safety considerations in the workshop.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Magnetic forces STEM activity
Creating designs for novel products using magnets
In this fun STEM activity students will learn about how magnets can be used to attract or repel each other. They will use their knowledge of how they work to identify and sketch design ideas for two novel products that make use of magnets and magnetism.
This resource is a great way for KS2 students to learn all about magnets and could be used as a one-off activity or as part of a wider unit of work focusing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University.
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on identifying and sketching design ideas for innovative products that make use of magnets.
This activity could be completed as individuals or in small groups.
This activity will take approximately 40-60 minutes to complete.
Tools/resources required
Bar magnets with N and S poles marked
Modelling materials (for extension activity)
Pencils, pens and sketching equipment
CAD software (for extension activity)
Modelling tools and equipment (for extension activity)
Magnetic forces
Magnets are made from materials such as iron and nickel and they have a north pole and a south pole.
When the north pole of a magnet is placed near the south pole of another magnet, they will attract each other. When two poles that are the same are placed near each other, they will repel each other. For example, north to north and south to south.
The engineering context
Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems. For example, when developing green transport solutions.
Suggested learning outcomes
By the end of this activity students will be able to describe magnets as having two poles, they will understand how magnets attract or repel each other and they will be able to identify and design ideas for products that make use of magnets.
Download the free Magnetic forces STEM activity sheet!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Design a sports wheelchair
Design a sports wheelchair for a Marathon race
This activity is focused on the design of racing wheelchairs, but also develops understanding about the use of search engines. It considers the use of different search terms when using internet-based research using search engines and how this affects the outcomes of the search. The main activity involves designing a racing wheelchair considering key aspects to enhance its performance.
The first London Marathon wheelchair race took place in 1983 in which 19 people took part with 17 completing the race. The winner, Gordon Perry, set a winning time of just over 3 hours and 20 minutes. With the advancements in engineering and technology since that date, wheelchair racing has come a long way, and in 2021, Marcel Hug won the London Marathon’s men’s wheelchair race setting a new course record with a time of just over 1 hour and 26 minutes!
Activity info, teachers’ notes and curriculum links
In this activity, learners will use the theme of the London Marathon to respond to a design context, investigate the context on the internet and design a wheelchair for sports use.
This activity could be used as a main lesson activity to develop skills in designing. It could also be used to teach learners about how to search the internet effectively to gain the information that is most applicable to their requirements.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
Pens, pencils and drawing instruments
Computer access for internet searching
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Wheel materials
Testing materials to see which material is the most suitable for a wheel
This resource has been developed with the support of the Bugatti Trust Museum and Study Centre and focuses on testing materials to see which material is the most suitable for a wheel using Engineering and Math’s skills.
Ettore Bugatti was the founder and designer of Bugatti sports cars. He was the first designer to use aluminium wheels to decrease the weight of Grand Prix racing cars, designing one of the most successful racing cars in the world.
Activity info, teachers’ notes and curriculum links
In this activity learners will test various discs made from different materials to see how they perform as a wheel.
This activity could be used as a main lesson activity to teach learners about the physical properties of materials or approaches to testing in the context of practical applications. It could also be used as part of an introduction to the practical use of numeracy within engineering.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
• Discs of material, 140 mm diameter with a 10 mm central hole; for example, steel, aluminium, acrylic, plywood
• Metal bar or pipe, 8-10 mm diameter
• G clamps or vices
• Masking tape
• Weights – various, 250 g to 1 kg
• Stopwatch
• Calculators
• Rulers and writing implements
• Optional: scales to weigh the discs
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
How high will it go?
Find the height achieved by a flying object using trigonometry.
In this activity learners will work out the height of a released balloon using a clinometer and trigonometry. This is one of a series of resources designed to allow learners to use the theme of the future of flight to develop their knowledge and skills in in Design and Technology, Engineering and Mathematics.
This activity could be used as a main lesson activity to teach learners about the practical application of trigonometry. It could also be used as part of an introduction to the use of trigonometry within engineering.
You will need:
Thin card
Balloons
Balloon pump, if required
Brass split pin paper fasteners
Scissors
Sharp pencils and erasers
Calculators
Tape measure
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Hydrogen power
How to make hydrogen from water.
In this activity learners will make use of the theme of the future of flight to investigate one of the potential energy sources of the future. They will discuss the problems associated with the use of oil-based fuels and how the use of hydrogen fuels could solve them. They will then produce hydrogen from water and investigate ways to make it work better.
This activity could be used as a main lesson to teach about power supplies and renewable energy within a transport context. It could also be used as part of a wider scheme of learning to teach about sustainability and environmental issues.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Flying high
Calculating the amount of energy needed to launch a rocket into space.
In this activity learners will make use of the theme of the future of flight to calculate the amount of energy needed to launch a space rocket. They will discuss the meaning of the term escape velocity and then perform calculations based on the Space X and Saturn V rockets.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
How to Make a Magnetic Newton’s Cradle
Making a cradle using magnets that repel each other
Newton’s cradle uses swinging spheres to show how the conservation of momentum and the conservation of energy works. The device was named after Sir Isaac Newton and designed by French scientist Edme Mariotte.
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on producing a magnetic Newton’s cradle that uses magnets which repel each other instead of the usual metal spheres.
This is a great way for students to learn all about magnets and could be used as a one-off activity or as part of a wider unit of work focusing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University.
This activity will take approximately 65-90 minutes.
Tools/resources required
Circular magnets with holes in the middle (with N and S poles)
150 mm lengths of dowel
75 mm lengths dowel
100 – 120 mm long pieces of string (6 per unit being built)
Masking tape
Example of a ‘regular’ Newton’s cradle.
Scissors
Hot glue guns, if appropriate
Magnetic forces
Magnets are made from materials such as iron and nickel and they have a north pole and a south pole.
When the north pole of a magnet is placed near the south pole of another magnet, they will attract each other. When two poles that are the same are placed near each other, they will repel each other. For example, north to north and south to south.
The engineering context
Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems. For example, when developing green transport solutions.
Suggested learning outcomes
By the end of this activity students will be able to describe magnets as having two poles – north and south, they will understand that magnets either attract or repel each other and they will be able to make and test a ‘magnetic’ Newton’s cradle.
Download the free How to make a magnetic Newton’s cradle activity sheet!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
How Does the Light from a Torch Change with Distance?
Carry out an experiment to measure how the light from a torch changes with the distance from a lamp
In this activity learners will carry out an experiment to measure how the light from a torch changes with the distance from the lamp. They will record their results in a table and plot a graph.
Activity: How Does the Light from a Torch Change with Distance?
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science, design and technology, and maths (in this case, mainly science). This resource focuses on the investigation of how the light from a torch (flashlight) changes with distance.
This activity is designed to be carried out in small groups. It is recommended that the teacher carry out the activity in advance of the lesson, to determine whether the distances suggested give sufficient (or excessive) spread of the light image, as this will be determined by the design of the torch used. It is recommended that new batteries are used in the torch, as the light intensity may be affected by the amount of charge remaining in the batteries.
This could be used as a one-off activity in science or linked to maths learning about tables and graphs.
This activity will take approximately 40-60 minutes to complete.
Tools/resources required
Graph paper
Masking tape
Tape measures
Torches/flashlights (with new batteries)
Pencils
(for extension) laser pointer
(for extension) cut-out templates of simple shapes (e.g. square, triangle, circle), mounted on craft sticks
The engineering context
Engineers need to understand how light behaves when designing products for many practical applications. For example, when designing buildings, they may consider the provision of windows and artificial lighting; and when designing cars, they may consider the power and position of both internal and external lights and the placement of mirrors.
Suggested learning outcomes
By the end of this activity students will be able to carry out a scientific experiment and they will understand that the distribution of light from a torch changes with distance.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Make a water mill that generates electricity
Create a water mill to produce electricity and power an LED
In this exciting activity for primary students, kids will understand what is meant by, and the need for, renewable energy.
They will make and test a water mill that produces enough electricity to light an LED and learn how water wheels work. This engineering activity will show students how electricity can be generated using the power of moving water and teach students facts about how the ancient Greeks have affected modern life. Resources for teachers are provided.
And please do share your classroom learning highlights with us @IETeducation
Balloon speakers
In this simple STEM activity for kids learners will investigate how a balloon can be used as a simple speaker. They will blow up the balloon, tap it and listen to how to sounds travel through it. They will then discuss the outcome of their experiment and explain why the balloon speaker works in the way that it does.
This activity could be used as a starter activity to introduce the concept of sound and how it travels, or as one of several activities within a wider scheme of learning focusing on sound.
Activity: Balloon speakers
This is one of a set of free resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on using a balloon as a simple speaker to amplify sound.
What happens when you tap the balloon? What can you hear and feel? Why do you think this is happening?
This is a quick and easy STEM activity that will take approximately 15 – 20 minutes.
The engineering context
Engineers must understand how speakers work in order to successfully design products that use them, such as phones, music players and TVs.
Sound engineers must understand how sound can be amplified and transmitted from one place to another. For example, at a concert. Understanding how speakers work is a very important part of this.
Suggested learning outcomes
By the end of this exercise students will know that vibrations from sounds travel through a medium in the ear. They will also be able to use a balloon as a simple speaker and explain how it works. Lastly, they will understand how pushing air closely together affects the volume of sound travelling through it.
Download the Balloon speakers activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation