Hero image

Edulito

Average Rating4.19
(based on 40 reviews)

I started out as a science teacher and made the transition to teaching ICT and Computer Science, which I have now been doing for over 20 years. I have also worked with primary school teachers to support their delivery of the national curriculum in computing. Edulito is a UK based educational publishing company that provides learning resources for school-aged children. All of the available resources have been tested in UK schools.

117Uploads

78k+Views

20k+Downloads

I started out as a science teacher and made the transition to teaching ICT and Computer Science, which I have now been doing for over 20 years. I have also worked with primary school teachers to support their delivery of the national curriculum in computing. Edulito is a UK based educational publishing company that provides learning resources for school-aged children. All of the available resources have been tested in UK schools.
14 TOPIC TESTS - OCR GCSE COMPUTER SCIENCE J277 (FROM 2020)
edulitolearnedulitolearn

14 TOPIC TESTS - OCR GCSE COMPUTER SCIENCE J277 (FROM 2020)

(0)
This pack consists of 14 end of topic tests that can be used to support your delivery of the course. In addition, the topic test bundle also contains a mark scheme for each test. Unit 1.1 – 1 Test Unit 1.2 – 3 Tests Unit 1.3 – 2 Tests Unit 1.4 -1 Test Unit 1.5 - 1 Test Unit 1.6 - 1 Test Unit 2.1 - 1 Test Unit 2.2 - 1 Test Unit 2.3 - 1 Test Unit 2.4 - 1 Test Unit 2.5 - 1 Test
TEACHER POWERPOINTS: UNIT 3.4 COMPUTER SYSTEMS 8525 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: UNIT 3.4 COMPUTER SYSTEMS 8525 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (219 Slides) cover all aspects of the specification in relation to AQA GCSE Computer Science 8525 (from 2020) component 3.4. It includes: Teaching PowerPoints (including checkpoint questions and answers) - Student PowerPoints (Including checkpoint questions, but omits the answers) Content Covered: Define the terms hardware and software and understand the relationship between them. Construct truth tables for the following logic gates: • NOT • AND • OR • XOR. Construct truth tables for simple logic circuits using combinations of NOT, AND, OR and XOR gates. Interpret the results of simple truth tables. Create, modify and interpret simple logic circuit diagrams. Students will only need to use NOT, AND, OR and XOR gates within logic circuits. Students will be expected to understand and use the standard logic circuit symbols. Create and interpret simple Boolean expressions made up of NOT, AND, OR and XOR operations. Create the Boolean expression for a simple logic circuit. Create a logic circuit from a simple Booleanexpression. Explain what is meant by: • system software • application software. Give examples of both types of software. Understand the need for, and functions of, operating systems (OS) and utility programs. Understand that the OS handles management of the: • processor(s) • memory • input/output (I/O) devices • applications • security. Know that there are different levels of programming language: • low-level language • high-level language. Explain the main differences between low-level and high-level languages. Know that machine code and assembly language are considered to be low-level languages and explain the differences between them. Understand that all programming code written in high-level or assembly languages must be translated. Understand that machine code is expressed in binary and is specific to a processor or family of processors. Understand the advantages and disadvantages of low-level language programming compared with high-level language programming. Understand that there are three common types of program translator: • interpreter • compiler • assembler. Explain the main differences between these three types of translator. Understand when it would be appropriate to use each type of translator. Explain the role and operation of main memory and the following major components of a central processing unit (CPU) within the Von Neumann architecture: • arithmetic logic unit • control unit • clock • register • bus. Explain the effect of the following on the performance of the CPU: • clock speed • number of processor cores • cache size. Understand and explain the Fetch-Execute cycle. Understand the different types of memory within a computer: • RAM • ROM • Cache • Register. Know what the different types of memory are used for and why they are required. etc
TEACHER POWERPOINTS: UNIT 3.5 FUNDAMENTALS OF COMPUTER NETWORKS 8525 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: UNIT 3.5 FUNDAMENTALS OF COMPUTER NETWORKS 8525 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (69 Slides) cover all aspects of the specification in relation to AQA GCSE Computer Science 8525 (from 2020) component 3.5. It includes: Teaching PowerPoints (including checkpoint questions and answers) - 69 slides Student PowerPoints (Including checkpoint questions, but omits the answers) Content Covered: Define what a computer network is. Discuss the advantages and disadvantages of computer networks. Describe the main types of computer network including: • Personal Area Network (PAN) • Local Area Network (LAN) • Wide Area Network (WAN). Understand that networks can be wired or wireless. Discuss the advantages and disadvantages of wireless networks as opposed to wired networks. Describe the following common LAN topologies: • star • bus. Define the term network protocol. Explain the purpose and use of common network protocols including: • Ethernet • Wi-Fi • TCP (Transmission Control Protocol) • UDP (User Datagram Protocol) • IP (Internet Protocol) • HTTP (Hypertext Transfer Protocol) • HTTPS (Hypertext Transfer Protocol Secure) • FTP (File Transfer Protocol) • email protocols: • SMTP (Simple Mail Transfer Protocol) • IMAP (Internet Message Access Protocol). Understand the need for, and importance of, network security. Explain the following methods of network security: • authentication • encryption • firewall • MAC address filtering. Describe the 4-layer TCP/IP model: • application layer • transport layer • internet layer • link layer. Understand that the HTTP, HTTPS, SMTP, IMAP and FTP protocols operate at the application layer. Understand that the TCP and UDP protocols operate at the transport layer. Understand that the IP protocol operates at the internet layer.
TEACHER POWERPOINTS: UNIT 1.2 MEMORY & STORAGE J277 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: UNIT 1.2 MEMORY & STORAGE J277 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (188 Slides) cover all aspects of the specification in relation to OCR GCSE Computer Science J277 (from 2020) component 1.2. It includes: Teaching PowerPoint Presentations (including checkpoint questions and answers) Part 1 – Memory (33 Slides) Part 2 – Secondary Storage (45 Slides) Part 3 – Data Storage – Numbers (49 Slides) Part 4 - Data Storage: Characters, Images & Sound (61 Slides) Student PowerPoint Presentations (Including checkpoint questions, but omits the answers) Part 1 – Memory Part 2 – Secondary Storage Part 3 – Data Storage – Numbers Part 4 - Data Storage: Characters, Images & Sound Content Covered: The need for primary storage The difference between RAM and ROM The purpose of ROM in a computer system The purpose of RAM in a computer system Virtual memory The need for secondary storage Common types of storage: Optical Magnetic Solid state Suitable storage devices and storage media for a given application The advantages and disadvantages of different storage devices and storage media relating to these characteristics: Capacity Speed Portability Durability Reliability Cost The units of data storage: Bit Nibble (4 bits) Byte (8 bits) Kilobyte (1,000 bytes or 1 KB) Megabyte (1,000 KB) Gigabyte (1,000 MB) Terabyte (1,000 GB) Petabyte (1,000 TB) How data needs to be converted into a binary format to be processed by a computer Data capacity and calculation of data capacity requirements Numbers How to convert positive denary whole numbers to binary numbers (up to and including 8 bits) and vice versa How to add two binary integers together (up to and including 8 bits) and explain overflow errors which may occur How to convert positive denary whole numbers into 2-digit hexadecimal numbers and vice versa How to convert binary integers to their hexadecimal equivalents and vice versa Binary shifts Characters The use of binary codes to represent characters The term ‘character set’ The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.: ASCII Unicode Images How an image is represented as a series of pixels, represented in binary Metadata The effect of colour depth and resolution on: The quality of the image The size of an image file Sound How sound can be sampled and stored in digital form The effect of sample rate, duration and bit depth on: The playback quality The size of a sound file The need for compression Types of compression: Lossy Lossless
TEACHER POWERPOINTS: UNIT 3.3 FUNDAMENTALS OF DATA REPRESENTATION 8525 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: UNIT 3.3 FUNDAMENTALS OF DATA REPRESENTATION 8525 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (125 Slides) cover all aspects of the specification in relation to AQA GCSE Computer Science 8525 (from 2020) component 3.3. It includes: Teaching PowerPoints (including checkpoint questions and answers) - 125 Slides Student PowerPoints (Including checkpoint questions, but omits the answers) Content Covered: Understand the following number bases: • decimal (base 10) • binary (base 2) • hexadecimal (base 16). Understand that computers use binary to represent all data and instructions. Explain why hexadecimal is often used in computer science. Understand how binary can be used to represent whole numbers. Understand how hexadecimal can be used to represent whole numbers. Be able to convert in both directions between: • binary and decimal • binary and hexadecimal • decimal and hexadecimal. Know that: • a bit is the fundamental unit of information • a byte is a group of 8 bits. Know that quantities of bytes can be described using prefixes. Know the names, symbols and corresponding values for the decimal prefixes: • kilo, 1 kB is 1,000 bytes • mega, 1 MB is 1,000 kilobytes • giga, 1 GB is 1,000 Megabytes • tera, 1 TB is 1,000 Gigabytes. Be able to compare quantities of bytes using the prefixes above. Be able to add together up to three binary numbers. Be able to apply a binary shift to a binary number. Describe situations where binary shifts can be used. Understand what a character set is and be able to describe the following character encoding methods: • 7-bit ASCII • Unicode. Understand that character codes are commonly grouped and run in sequence within encoding tables. Describe the purpose of Unicode and the advantages of Unicode over ASCII. Know that Unicode uses the same codes as ASCII up to 127. Understand what a pixel is and be able to describe how pixels relate to an image and the way images are displayed. Describe the following for bitmaps: • image size • colour depth. Know that the size of a bitmap image is measured in pixels (width x height). Describe how a bitmap represents an image using pixels and colour depth. Describe using examples how the number of pixels and colour depth can affect the file size of a bitmap image. Calculate bitmap image file sizes based on the number of pixels and colour depth. Convert binary data into a bitmap image. Convert a bitmap image into binary data. Understand that sound is analogue and that it must be converted to a digital form for storage and processing in a computer. Understand that analogue signals are sampled to create the digital version of sound. Describe the digital representation of sound in terms of: • sampling rate • sample resolution. Calculate sound file sizes based on the sampling rate and the sample resolution. Explain what data compression is. Understand why data may be compressed and that there are different ways to compress data.
TEACHER POWERPOINTS: UNIT 2.5 PROGRAMMING LANGUAGES AND IDES J277 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: UNIT 2.5 PROGRAMMING LANGUAGES AND IDES J277 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (31 Slides) cover all aspects of the specification in relation to OCR GCSE Computer Science J277 (from 2020) component 2.5. It includes: Teaching PowerPoint Presenations (includes checkpoint questions and answers) Student PowerPoint Presentations (Includes checkpoint questions, but omits the answers) Content Covered: Characteristics and purpose of different levels of programming language: High-level languages Low-level languages The purpose of translators The characteristics of a compiler and an interpreter Common tools and facilities available in an Integrated Development Environment (IDE): Editors Error diagnostics Run-time environment Translators
TEACHER POWERPOINTS: UNIT 3.6 CYBER SECURITY 8525 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: UNIT 3.6 CYBER SECURITY 8525 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (54 Slides) cover all aspects of the specification in relation to AQA GCSE Computer Science 8525 (from 2020) component 3.6. It includes: Teaching PowerPoint Presentations (includes checkpoint questions and answers) Student PowerPoint Presentations (Includes checkpoint questions, but omits the answers) Content Covered: Be able to define the term cyber security and be able to describe the main purposes of cyber security. Students should know that cyber security consists of the processes, practices and technologies designed to protect networks, computers, programs and data from attack, damage or unauthorised access. Understand and be able to explain the following cyber security threats: • social engineering techniques • malicious code (malware) • pharming • weak and default passwords • misconfigured access rights • removable media • unpatched and/or outdated software. Explain what penetration testing is and what it is used for. Define the term social engineering. Describe what social engineering is and how it can be protected against. Explain the following forms of social engineering: • blagging (pretexting) • phishing • shouldering (or shoulder surfing). Define the term malware. Describe what malware is and how it can be protected against. Describe the following forms of malware: • computer virus • trojan • spyware. Understand and be able to explain the following security measures: • biometric measures (particularly for mobile devices) • password systems • CAPTCHA (or similar) • using email confirmations to confirm a user’s identity • automatic software updates.
TEACHER POWERPOINTS: UNIT 2.1 ALGORITHMS J277 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: UNIT 2.1 ALGORITHMS J277 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (86 Slides) cover all aspects of the specification in relation to OCR GCSE Computer Science J277 (from 2020) component 2.1. It includes: Teaching PowerPoints (includes checkpoint questions and answers) Student PowerPoints (Includes checkpoint questions, but omits the answers) Content Covered: Principles of computational thinking: Abstraction Decomposition Algorithmic thinking Identify the inputs, processes, and outputs for a problem Structure diagrams Create, interpret, correct, complete, and refine algorithms using: Pseudocode Flowcharts Reference language/high-level programming language Identify common errors Trace tables Standard searching algorithms: Binary search Linear search Standard sorting algorithms: Bubble sort Merge sort Insertion sort
TEACHER POWERPOINTS: UNIT 3.8 IMPACTS OF DIGITAL TECHNOLOGY 8525 (FROM (20
edulitolearnedulitolearn

TEACHER POWERPOINTS: UNIT 3.8 IMPACTS OF DIGITAL TECHNOLOGY 8525 (FROM (20

(0)
These adaptable PowerPoint Presentations (38 Slides) cover all aspects of the specification in relation to AQA GCSE Computer Science 8525 (from 2020) component 3.8. It includes: Teaching PowerPoint Presentations (includes checkpoint questions and answers) - 38 slides Student PowerPoint Presentations (Includes checkpoint questions, but omits the answers) Content Covered: Explain the current ethical, legal and environmental impacts and risks of digital technology on society. Where data privacy issues arise, these should be considered. Exam questions will be taken from the following areas: • cyber security • mobile technologies • wireless networking • cloud storage • hacking (unauthorised access to a computer system) • wearable technologies • computer-based implants • autonomous vehicles.
13 TOPIC TESTS - AQA GCSE COMPUTER SCIENCE 8525 (FROM 2020)
edulitolearnedulitolearn

13 TOPIC TESTS - AQA GCSE COMPUTER SCIENCE 8525 (FROM 2020)

(0)
This pack consists of 13 end of topic tests that can be used to support your delivery of the course. In addition, the topic test bundle also contains a mark scheme for each test. Unit 3.1 – 1 Test Unit 3.2 – 2 Tests Unit 3.3 – 1 Test Unit 3.4 – 4 Tests Unit 3.5 - 2 Test Unit 3.6 – 1 Test Unit 3.7 – 1 Test Unit 3.8 – 1 Test
TEACHER POWERPOINTS: UNIT 2.4 BOOLEAN LOGIC J277 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: UNIT 2.4 BOOLEAN LOGIC J277 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (42 Slides) cover all aspects of the specification in relation to OCR GCSE Computer Science J277 (from 2020) component 2.4. It includes: Teaching PowerPoint Presentations (includes checkpoint questions and answers) Student PowerPoint Presentations (Includes checkpoint questions, but omits the answers) Content Covered: Simple logic diagrams using the operators AND, OR and NOT Truth tables Combining Boolean operators using AND, OR and NOT Applying logical operators in truth tables to solve problems
4 PRACTICE EXAM PAPERS - GCSE COMPUTER SCIENCE AQA 8525 (FROM 2020)
edulitolearnedulitolearn

4 PRACTICE EXAM PAPERS - GCSE COMPUTER SCIENCE AQA 8525 (FROM 2020)

(0)
This pack includes four practice exam papers with mark schemes for AQA GCSE Computer Science (9–1) specification (first teaching September 2020, examinations from 2022). The papers have been written to replicate the style of AQA examinations. These papers provide students with an opportunity to familiarise themselves with the look and feel of an AQA paper. The digital pack includes: · two practice papers for Computational Thinking and Programming Skills (Paper 1) · two practice papers for Computing Concepts (Paper 2) The papers combined cover all aspects of the computer science curriculum. You will also receive a comprehensive mark scheme for each paper.
TEACHER POWERPOINTS: EDEXCEL - TOPIC 1 & 6 COMPUTATIONAL THINKING AND PROGRAMMING 1CP2 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: EDEXCEL - TOPIC 1 & 6 COMPUTATIONAL THINKING AND PROGRAMMING 1CP2 (FROM 2020)

(0)
These adaptable Powerpoint Presentations (274 Slides) cover all aspects of the specification in relation to Edexcel GCSE Computer Science 1CP2 (from 2020) topic 1 and topic 6. These two topics have been combined so that students can learn about algorithms and at the same time have the opportunity to understand how algorithms can then be developed into programs. The programming language used is Python. It includes: Teaching PowerPoints (including checkpoint questions and answers) Student PowerPoints (Including checkpoint questions, but omits the answers) Content Covered: Topic 1 · understand the benefit of using decomposition and abstraction to model aspects of the real world and analyse, understand and solve problems · understand the benefits of using subprograms · be able to follow and write algorithms (flowcharts, written descriptions, draft program code or assessment reference language) that use sequence, selection, repetition (count-controlled, pre-conditioned, post-conditioned) and iteration (over every item in a data structure), and input, processing and output to solve problems · understand the need for and be able to follow and write algorithms that use variables and constants and one- and two-dimensional data structures (strings, records, arrays) · understand the need for and be able to follow and write algorithms that use arithmetic operators (add, subtract, divide, multiply, modulus, integer division), relational operators (equal to, less than, greater than, not equal to, less than or equal to, greater than or equal to) and logical operators (AND, OR, NOT) · be able to determine the correct output of an algorithm for a given set of data and use a trace table to determine what value a variable will hold at a given point in an algorithm · be able to identify and correct errors (logic, runtime) in algorithms · understand how standard algorithms (bubble sort, merge sort, linear search, binary search) work · be able to use logical reasoning and test data to evaluate an algorithm’s fitness for purpose and efficiency (number of compares, number of passes through a loop, use of memory) · be able to apply logical operators (AND, OR, NOT) in appropriate truth tables to solve problems Topic 6 · be able to use decomposition and abstraction to analyse, understand and solve problems · be able to read, write, analyse and refine programs written in a high-level programming language · be able to convert algorithms (flowcharts, written descriptions) into programs and convert programs into algorithms · be able to use techniques (layout, comments, meaningful identifiers, white space) to make programs easier to read, understand and maintain · be able to identify, locate and correct program errors (logic, syntax, runtime) etc
TEACHER POWERPOINTS: TOPIC 4 NETWORKS 1CP2 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: TOPIC 4 NETWORKS 1CP2 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (121 Slides) cover all aspects of the specification in relation to Edexcel GCSE Computer Science 1CP2 (from 2020) topic 4. It includes: Teaching PowerPoints (including checkpoint questions and answers) Student PowerPoint (Including checkpoint questions, but omits the answers) Content Covered: · understand why computers are connected in a network · understand different types of networks (LAN, WAN) · understand how the internet is structured (IP addressing, routers) · understand how the characteristics of wired and wireless connectivity impact on performance (speed, range, throughput, bandwidth) · understand that network speeds are measured in bits per second (kilobit, megabit, gigabit) and be able to construct expressions involving file size, transmission rate and time · understand the role of and need for protocols (Ethernet, Wi-Fi, TCP/IP, HTTP, HTTPS, FTP and email (POP3, SMTP, IMAP)) · understand how the 4-layer (application, transport, network, data link) TCP/IP model handles data transmission over a network · understand characteristics of network topologies (bus, star, mesh) · understand the importance of network security, ways of identifying network vulnerabilities (penetration testing, ethical hacking) and methods of protecting networks (access control, physical security, firewalls)
4 PRACTICE EXAM PAPERS - GCSE COMPUTER SCIENCE EDEXCEL 1CP2 (FROM 2020)
edulitolearnedulitolearn

4 PRACTICE EXAM PAPERS - GCSE COMPUTER SCIENCE EDEXCEL 1CP2 (FROM 2020)

(0)
This pack includes four practice exam papers with mark schemes for Edexcel GCSE Computer Science (9–1) specification (first teaching September 2020, examinations from 2022). The papers have been written to replicate the style of Edexcel examinations. These papers provide students with an opportunity to familiarise themselves with the look and feel of an Edexcel paper. Python is the programming language used. The digital pack includes: · two practice papers for Principles of Computer Science (Paper 1) · two practice papers for Application of Computational Thinking (Paper 2) – Included with these papers are Python files for access by students during the exam and a complete set of Python file solutions. The papers combined cover all aspects of the computer science curriculum. You will also receive a comprehensive mark scheme for each paper.
TEACHER POWERPOINTS: TOPIC 5 ISSUES AND IMPACTS 1CP2 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS: TOPIC 5 ISSUES AND IMPACTS 1CP2 (FROM 2020)

(0)
These adaptable PowerPoint Presentations (79 Slides) cover all aspects of the specification in relation to Edexcel GCSE Computer Science 1CP2 (from 2020) topic 5. It includes: Teaching PowerPoints (including checkpoint questions and answers) Student PowerPoints (Including checkpoint questions, but omits the answers) Content Covered: · understand environmental issues associated with the use of digital devices (energy consumption, manufacture, replacement cycle, disposal) · understand ethical and legal issues associated with the collection and use of personal data (privacy, ownership, consent, misuse, data protection) · understand ethical and legal issues associated with the use of artificial intelligence, machine learning and robotics (accountability, safety, algorithmic bias, legal liability) · understand methods of intellectual property protection for computer systems and software (copyright, patents, trademarks, licencing) · understand the threat to digital systems posed by malware (viruses, worms, Trojans, ransomware, key loggers) and how hackers exploit technical vulnerabilities (unpatched software, out-of-date anti-malware) and use social engineering to carry out cyberattacks · understand methods of protecting digital systems and data (anti-malware, encryption, acceptable use policies, backup and recovery procedures)
30 HOMEWORK ACTIVITIES - EDEXCEL GCSE COMPUTER SCIENCE 1CP2 (FROM 2020)
edulitolearnedulitolearn

30 HOMEWORK ACTIVITIES - EDEXCEL GCSE COMPUTER SCIENCE 1CP2 (FROM 2020)

(0)
This pack consists of 30 editable homework/classwork activities that can be used to support your delivery of the course. In addition, the homework pack also contains a suggested mark scheme for each activity. Topic 1 & 6 · Decomposition and Abstraction · Flowcharts and Programs · Sorting Data · Sorting and Searching Programs · Selection · Arrays (Lists) · Functions · Improving Programs · Testing Topic 2 · Data Capacity · Conversions · Compression Topic 3 · Components of a CPU · CPU Performance · Embedded Systems · Storage Comparison · Operating Systems · Utility Software · Authentication · Programming Languages Topic 4 · LANS and WANS · Wired and Wireless Networks · Star and Mesh Networks · Network Protocols · The Concept of Layers Topic 5 · The Impact of Technology · The Environment · Social & Work Issues · Network Vulnerabilities
TEACHER POWERPOINTS BUNDLE: COMPONENT 2 - COMPUTATIONAL THINKING, ALGORITHMS AND PROGRAMMING J277 (FROM 2020)
edulitolearnedulitolearn

TEACHER POWERPOINTS BUNDLE: COMPONENT 2 - COMPUTATIONAL THINKING, ALGORITHMS AND PROGRAMMING J277 (FROM 2020)

5 Resources
These adaptable PowerPoint Presentations (357 Slides) cover all aspects of the specification in relation to OCR GCSE Computer Science J277 (from 2020) Component 2 - Computational thinking, algorithms and programming . It includes: Teaching PowerPoint Presentations (including checkpoint questions and answers) Student PowerPoint Presentations (Including checkpoint questions, but omits the answers) Content Covered: 2.1 Algorithms 2.2 Programming fundamentals 2.3 Producing robust programs 2.4 Boolean logic 2.5 Programming languages and Integrated Development Environments
TEACHER POWERPOINTS BUNDLE: GCSE COMPUTER SCIENCE COMPONENT 1 & 2 - OCR J277
edulitolearnedulitolearn

TEACHER POWERPOINTS BUNDLE: GCSE COMPUTER SCIENCE COMPONENT 1 & 2 - OCR J277

15 Resources
These adaptable PowerPoint Presentations (836 Slides) cover all aspects of the specification in relation to OCR GCSE Computer Science J277 (from 2020). Component 1 - Computer Systems Component 2 - Computational thinking, algorithms and programming. It includes: Teaching PowerPoint Presentations (including checkpoint questions and answers) 800+Slides Student PowerPoint Presentations (Including checkpoint questions, but omits the answers) A Complete Guide to Python Programming (including student activities) Content Covered: 1.1 Systems architecture 1.2 Memory and storage 1.3 Computer networks, connections and protocols 1.4 Network security 1.5 Systems software 1.6 Ethical, legal, cultural and environmental impacts of digital technology 2.1 Algorithms 2.2 Programming fundamentals 2.3 Producing robust programs 2.4 Boolean logic 2.5 Programming languages and Integrated Development Environments