Hero image

HB science resources

Average Rating3.61
(based on 27 reviews)

A Science teacher since 2016 creating and sharing resources he uses with his own classes.

534Uploads

72k+Views

41k+Downloads

A Science teacher since 2016 creating and sharing resources he uses with his own classes.
Transverse and longitudinal waves and wave speed
hbscienceresourceshbscienceresources

Transverse and longitudinal waves and wave speed

(0)
A 6 page mini-booklet that should ensure students are: Able to identify longitudinal waves, Able to identify transverse waves, Able to describe the amplitude of a wave, Able to describe the wavelength of a wave, Able to describe frequency, Able to identify the effects of amplitude and frequency on sound, Able to rearrange equations using the triangle, Able to use the wave speed equation. Includes reading for understanding tasks. Suitable for higher ability KS3 students and KS4 students.
Day and night
hbscienceresourceshbscienceresources

Day and night

(0)
By the end of the lesson learners should be able to: Identify what causes day and night time. Describe how the Earth moves: Through rotating: Around the Sun: Explain the link between the rotation of the Earth and the effect on days.
Phases of the Moon
hbscienceresourceshbscienceresources

Phases of the Moon

(0)
By the end of the lesson learners should be able to: Identify all phases of the Moon Describe how light from the Sun can reflect from the Moon. Explain how the Moon appears different in the night sky.
Particles Topic KS3
hbscienceresourceshbscienceresources

Particles Topic KS3

6 Resources
A collection of 6 lessons aimed toward KS3 students (yrs 11-14) Lessons require no preparation - easily taught by a cover teacher.
Moving Heat
hbscienceresourceshbscienceresources

Moving Heat

(0)
Originally created for the BTEC Applied Science level 3 qualification Unit 5 - Physics. By the end of the lesson learners should be able to: Recall the equipment needed for moving heat. Describe how altering the set-up of the system can lead to refrigeration or a heat pump being created. Use the coefficient of performance calculations for a heating system. The resource contains past paper questions and mark scheme answers. Slides were originally created using google slides, opening in microsoft powerpoint might cause slight misalignment - open in google slides to avoid this.
Light Sources and Transparent, Translucent and Opaque Materials
hbscienceresourceshbscienceresources

Light Sources and Transparent, Translucent and Opaque Materials

(0)
A comprehensive Powerpoint which will allows for students to learn about luminous and non-luminous objects, opaque, transparent and translucent objects and how thickness of a translucent object affects the amount of light traveling through. I personally use this as an introductory lesson to the light topic. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. By the end of the lesson students should be able to: Learning objective: Develop an understanding of how objects interact with light. Success criteria: -Identify luminous and non-luminous materials. -Describe how light interacts with a translucent material. -Explain why the thickness of a translucent material affects the light. This lesson contains 17 slides.
Reflection of Light
hbscienceresourceshbscienceresources

Reflection of Light

(0)
A resource containing a comprehensive powerpoint slideshow that will allow for learners to learn about the law of reflection, specular reflection and diffuse scattering and how objects appear in mirrors (virtual images) Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. An animation is included to show how a virtual image is generated. By the end of the lesson students should be able to: Learning objective: Develop an understanding of how light reflects and the law of reflection. Success criteria: Identify types of reflection. Describe the law of reflection. Explain the appearance of virtual objects. This lesson contains 40 slides
Electromagnets and Solenoids
hbscienceresourceshbscienceresources

Electromagnets and Solenoids

(0)
A comprehensive lesson that teaches students about electromagnets and how how magnetic fields are produced in a current carrying conductor. Solenoids as coils of wire that are able to behave as a bar magnets when a current is present in them. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. By the end of the lesson learners should be able to: Learning objective: Explain why current can generate electromagnets and how to change their properties. Success criteria: State what is created when current flows through a wire. Describe how to increase the magnetic field strength. Explain why solenoids are used in industry. Powerpoint contains 18 slides. Contains past paper questions and mark scheme answers to use as a plenary.
The Motor Effect Flemings left hand rule
hbscienceresourceshbscienceresources

The Motor Effect Flemings left hand rule

(0)
A comprehensive lesson which teaches students about Fleming’s Left Hand Rule, the motor effect and applying this to a simple motor. Students will also be able to use the F = BIL equation quantify the amount of force experienced by a wire. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Use and apply the left hand rule in order to justify the movement of a wire within a magnetic field. By the end of the lesson learners should be able to: Success criteria: I can identify the components of the left hand rule. I can justify the motion of the wire based on the rule. I can explain why motors are able to spin. Powerpoint contains 22 slides and a collection of past paper questions including the marking scheme.
Renewable and Non-Renewable Energy Resources
hbscienceresourceshbscienceresources

Renewable and Non-Renewable Energy Resources

(0)
A comprehensive lesson that teaches students the difference between renewable and non-renewable energy resources. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. By the end of the lesson students should be able to: Success criteria: Define renewable and non-renewable energy sources and list examples Describe the difference between renewable and non-renewable energy resources Explain how electricity is generated in a power station Learning objective: Investigate the differences in types of energy resources and evaluate the importance of some over others. Powerpoint contains 18 slides.
Energy Topic KS4
hbscienceresourceshbscienceresources

Energy Topic KS4

5 Resources
A series of lessons targeted for a KS4 audience (yrs 14-16). Lessons require no preparation and are suitable for use with a cover teacher.
Hooke's law and the Spring Constant K
hbscienceresourceshbscienceresources

Hooke's law and the Spring Constant K

(0)
A resource containing 2 powerpoint slides for 2 lessons and a worksheet for applying Hooke’s law and analysing data. I run the resource as an initial practical for investigating Hooke’s law and the second lesson to further solidify theory. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. For the practical lesson: By the end of the lesson students should be able to: Learning objective: Investigate the effects of forces on the extension of a spring. Success criteria: -Identify independent and dependent variables. -Describe how to write a method concerning spring extension. -Explain why repeatability and reliability are important factors within experiments. This lesson contains 17 slides. For the theory lesson: By the end of the lesson students should be able to: Learning objective: To analyse the results and draw conclusions between the spring practical and Hooke’s law theory. Success criteria: Identify the forces needed to extend and compress a spring. Describe Hooke’s law. Explain why the pattern for Hooke’s law does not remain indefinitely. This lesson contains 17 slides. The worksheet contains 2 pages.
Forces at a Distance gravity and electrostatic
hbscienceresourceshbscienceresources

Forces at a Distance gravity and electrostatic

(0)
A resource containing a comprehensive powerpoint slideshow that will guide learners through gravity and electrostatic non contact forces. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. By the end of the lesson students should be able to: Learning objective: Develop an understanding of how forces can act at a distance and explain why these forces are present. Success criteria: -Identify non-contact forces. -Describe how objects react to some non-contact forces. -Explain why non-contact forces are needed for our daily lives. This lesson contains 17 slides Produced to be used when delivering the activate 1 pathway.
IV graphs and Ohms law
hbscienceresourceshbscienceresources

IV graphs and Ohms law

(0)
A comprehensive lesson which teaches students about how IV graphs appear for fixed resistors, filament bulbs and diodes. The lesson also delves into the reasoning behind why these trends arise. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Use Ohm’s law to justify the trends seen in IV graphs for a fixed resistor, filament bulb and LED. By the end of the lesson learners should be able to: Success criteria: -Identify generally what happens to current as voltage increases. -Describe how to calculate resistance from a voltage-current graph. -Compare how the resistance changes with load in: fixed resistors, filament bulbs and diodes. Powerpoint contains 22 slides and a collection of past paper questions including the marking scheme.
Motion Topic KS4
hbscienceresourceshbscienceresources

Motion Topic KS4

5 Resources
A series of lessons targeted for a KS4 audience (yrs 14-16). Lessons require no preparation and are suitable for use with a cover teacher.
Sankey Diagrams
hbscienceresourceshbscienceresources

Sankey Diagrams

(0)
A comprehension lesson that teaches students how to create and analyse Sankey Diagrams. The concept is introduced in the context of money to firstly engage the students (dirham currency is used as the students I taught were in the UAE, however, this should be fairly simple to understand as it is labelled below). Support sheets are also included to guide students should it be needed. Tasks are differentiated to suit the needs of each learner. Progress checks are placed after each success criteria checkpoint to assess understanding. By the end of the lesson students should be able to: Success criteria: I can critically analyse a Sankey diagram to identify quantifiable components. I can construct and adapt Sankey diagrams I can calculate efficiency of a system from its Sankey diagram. Learning objective: Develop and interpret Sankey diagrams to visualize and analyze complex data flows. Powerpoint contains 33 slides and a lesson plan is also attached.