499Uploads
111k+Views
90k+Downloads
All resources
Food Groups, Nutrition and Food Tests Wildcard and Snap Card Games KS3
A great way to consolidate food groups, nutrition and food tests with this pack of cards which can be used to play three different card games. So much fun, students don’t even realise they are learning!
All games can be played with cards relating to food groups only if so wished.
Prior Knowledge Required
Carbohydrates provide energy
Proteins needed for growth and repair
Lipids (fats) provide energy and insulation
Minerals needed for a healthy body – examples iron for red blood cells and calcium for teeth and bones
Vitamins – enable body to use other nutrients more efficiently – examples Vit A for eyesight, Vit C prevents scurvy, Vit K for blood clotting
Roughage (fiber) moves food through the gut.
Why roughage helps prevent bowel cancer explained.
Importance of water in the diet.
Examples of foods containing the five nutrients and roughage.
Excess carbohydrates and fats are laid down under the skin.
A balanced diet explained.
Energy in food and energy needed for activity are measured in kilojoules (kj).
Working out the energy in a meal.
What You Get
78 playing cards
Animated PowerPoint with instructions for playing wildcard and snap
More high quality resources available here.
Elf Off the Shelf Resources
Light - Reflection in a Plane Mirror - Dominoes KS3
A dominoes game with questions and statements on reflection in a plane mirror instead of numbers.
Prior Knowledge
Transparent, translucent and opaque materials
Luminous and non-luminous objects
Labelling the incident and reflected rays, the angles of incidence and reflection, the normal and the point of incidence
Virtual experiment to prove i = r
Ray diagram showing how the eye sees an image in a plane mirror
The image formed in a plane mirror is upright, virtual (appears to be formed behind the mirror) laterally inverted, the same size as the object and as far behind the mirror as the object is in front.
Ray diagram showing how the eye sees an image in a periscope
Specular and diffuse reflection
What You Get
90 dominos
Animated PowerPoint explaining the rules and how to play.
Rules of the Game
Each player selects seven dominos from the top of the face-down pile and holds them in their hand like playing cards.
The player whose surname begins with a letter closest to the letter A starts and play proceed in a clockwise direction.
Dominos can be matched exactly, or a name can be matched with a symbol or descriptions, sketches and circuit diagrams can be matched.
If a player thinks a match is wrong, they can challenge. If the challenger is correct, they give a card from their own hand to the challenged player. If the challenged player is correct, they give a card from their hand to the challenger. Pupils are encouraged to check their books for the correct answer and consult their teacher if a consensus is not reached.
If a player cannot play a domino, they pick up from the face down pile and can play if possible or add it to their hand.
More high quality resources available here.
Elf Off the Shelf Resources
Light - Reflection in a Plane Mirror - Fully Resourced Distance Learning lesson KS3
This is an action-packed distance learning or home school introduction to reflection in plane mirrors.
This resource has been designed so that the animated PowerPoint replaces the teacher by providing structure, sequence, knowledge and answers. The worksheets, cut-outs, foldable and progress check provide a familiar medium for students to develop and test their knowledge, continue to develop their literacy skills and use their creativity to organise their learning and assess their progress.
The simulated practical shows how measurements for the angles of incidence and reflection are obtained and provides a set of results for the students to draw a conclusion.
What’s Covered
Transparent, translucent and opaque materials
Luminous and non-luminous objects
Labelling the incident and reflected rays, the angles of incidence and reflection, the normal and the point of incidence
Virtual experiment to prove i = r
Ray diagram showing how the eye sees an image in a plane mirror
The image formed in a plane mirror is upright, virtual (appears to be formed behind the mirror) laterally inverted, the same size as the object and as far behind the mirror as the object is in front.
Ray diagram showing how the eye sees an image in a periscope
Specular and diffuse images
Resources
An animated PowerPoint which guides the student through the lesson by:
explaining how to use distance learning effectively;
explaining how to use this resource;
explaining current, voltage and resistance and the relationship between them;
providing the answers to all the worksheets so that the students can mark and correct their work.
Four worksheets, and two cut-out activities, the answers to which are in the PowerPoint.
A foldable and cut-out activity so that students can record and organise their learning.
A checklist for students to use to assess their progress.
Digital quick test
For those students without internet or a computer or a computer at home a condensed printable copy of the PowerPoint is provided for distribution by school.
Ways to Use this Resource
Upload PowerPoint and worksheets to school intranet. Students print their own worksheets.
Upload PowerPoint and worksheets to school intranet and provide a hardcopy of worksheets for students. Those families who do not wish to collect worksheets or who are in isolation can print the worksheets at home.
Students without photocopying facilities are instructed to write their answers in full sentences
More high quality resources available here.
Elf Off the Shelf Resources
Light - Refraction Explained - Fully Resourced Lesson KS3
A comprehensive and enjoyable fully resourced lesson on refraction. The pack also includes a virtual experiment to find the values of the angles of incidence and refraction in a semi – circular glass block. This can either be used as a tool to enable the student to draw conclusions or as instruction for the student to perform their own real time experiment.
What’s Covered
The more dense the medium the slower the speed of light.
When light travels from a less dense medium to a more dense medium it is bent towards the normal.
When light travels from a more dense medium to a less dense medium it is bent away from the normal.
Light hitting a boundary at 900 is not refracted.
Light is not refracted at a curved boundary.
Complete ray diagrams showing refraction.
Design an experiment and results table to investigate refraction through a semi - circular glass block
Why lightning is seen before thunder is heard when a cloud discharges.
Real and apparent depth.
What’s Included
This pack contains fifteen printable resources as it is intended that the teacher uses them to build their own unique lesson to take account of student ability and time available. Literacy, oracy, self-assessment and peer assessment are all built in to the resources. These features are clearly marked on the comprehensive one-page flow chart lesson plan which shows where the logical choices between resources can be made.
More high quality resources available here.
Elf Off the Shelf Resources
Light - Lenses, the Pinhole Camera, The Eye and the Camera- Fully Resourced Lesson KS3
A comprehensive and enjoyable, fully resourced lesson on refraction in lenses which includes the eye, the pinhole camera and the modern camera.
What’s Covered
Ray diagrams showing refraction in a concave and convex lens.
Convex lenses are used in magnifying glasses, telescopes and spectacles to correct long sight.
Concave lenses are used in lasers, flashlights, peepholes and spectacles to correct short sight.
Label the following structures on a diagram of the eye; retina; ciliary muscle; iris; pupil; lens; suspensory ligament; optic nerve.
Draw ray diagrams and explain how the eye sees distant and close objects.
Draw ray diagrams and explain how lenses are used to correct long and short sight.
Draw diagrams and explain how the iris controls the size of the pupil and therefore the amount of light which enters the eye.
Draw a ray diagram of the pinhole camera, know that the image is inverted sand diminished, moving the object closer enlarges the image and multiple pinholes produce multiple images
Label a diagram of the camera and explain how a picture is taken.
Explain the differences and similarities between the eye and the camera
What’s Included
Animated PowerPoint for teaching with exit ticket quiz
Flip it (pupil writes questions to given answers)
Anticipation Guide (combined starter and plenary)
Foldable
Cut and stick activity (x2)
Pinhole camera template
Worksheet to support the PowerPoint (x3)
Fact sheet (x3)
Homework
Fact share worksheet
Pupil progress self-assessment checklist
Exit Ticket
Suggested lesson plan showing choices possible between resources
This pack contains nineteen printable resources as it is intended that the teacher uses them to build their own unique lesson to take account of student ability and time available. Literacy, oracy, self-assessment and peer assessment are all built in to the resources. These features are clearly marked on the comprehensive one-page flow chart lesson plan which shows where the logical choices between resources can be made.
More high quality resources available here.
Elf Off the Shelf Resources
Light - Lenses Plus the Eye, Pinhole Camera & Camera - Find the Pair Game KS3
This is an engaging and enjoyable memory game on lenses including the eye, the pinhole camera and the camera. Pupils work in teams of three or four. Each team lays out their 42 cards face down in a square and take it in turn to turn over two cards. If the cards are a question and its correct answer, the pupil keeps the pair. If they are not a match they are turned face down and the next pupil gets a turn. This process continues until all cards are matched and the winner is the pupil with the most pairs.
If a team member thinks that the selectors pair is not a correct match, they can challenge.
Pupils are encouraged to check their books for the correct answer but the teacher also has a quick-check answer sheet. If the challenge is correct, the challenger keeps the pair.
**Included in this Pack. **
42 question and answer cards
Teacher’s answer sheet.
Instruction sheet
Preparation
Use double-sided printing to copy 1 set per group of 4 pupils.
Sheets could be laminated to enable year-on-year use.
Cut sheets into cards.
Prior Knowledge Required
Ray diagrams showing refraction in a concave and convex lens.
Convex lenses are used in magnifying glasses, telescopes and spectacles to correct long sight.
Concave lenses are used in lasers, flashlights, peepholes and spectacles to correct short sight.
Label the following structures on a diagram of the eye; retina; ciliary muscle; iris; pupil; lens; suspensory ligament; optic nerve.
Draw ray diagrams and explain how the eye sees distant and close objects.
Draw ray diagrams and explain how lenses are used to correct long and short sight.
Draw diagrams and explain how the iris controls the size of the pupil and therefore the amount of light which enters the eye.
Draw a ray diagram of the pinhole camera, know that the image is inverted and diminished, moving the object closer enlarges the image and multiple pinholes produce multiple images
Label a diagram of the camera and explain how a picture is taken.
The differences and similarities between the eye and the camera
More high quality resources available here.
Elf Off the Shelf Resources
Light - Lenses, the Eye, Pinhole Camera and the Camera - Dominoes Game
A dominoes game with questions and statements on lenses, the eye, the pinhole camera and the camera instead of numbers.
Prior Knowledge
Convex lenses are used in magnifying glasses, telescopes and spectacles to correct long sight.
Concave lenses are used in lasers, flashlights, peepholes and spectacles to correct short sight.
Label the following structures on a diagram of the eye; retina; ciliary muscle; iris; pupil; lens; suspensory ligament; optic nerve.
Draw ray diagrams and explain how the eye sees distant and close objects.
Draw ray diagrams and explain how lenses are used to correct long and short sight.
Draw diagrams and explain how the iris controls the size of the pupil and therefore the amount of light which enters the eye.
Draw a ray diagram of the pinhole camera, know that the image is inverted sand diminished, moving the object closer enlarges the image and multiple pinholes produce multiple images
Label a diagram of the camera and explain how a picture is taken.
The differences and similarities between the eye and the camera.
What You Get
80 dominos
Animated PowerPoint explaining the rules and how to play.
Rules of the Game
Each player selects seven dominos from the top of the face-down pile and holds them in their hand like playing cards.
The player whose surname begins with a letter closest to the letter A starts and play proceed in a clockwise direction.
Dominos can be matched exactly, or a name can be matched with a symbol or descriptions, sketches and circuit diagrams can be matched.
If a player thinks a match is wrong, they can challenge. If the challenger is correct, they give a card from their own hand to the challenged player. If the challenged player is correct, they give a card from their hand to the challenger. Pupils are encouraged to check their books for the correct answer and consult their teacher if a consensus is not reached.
If a player cannot play a domino, they pick up from the face down pile and can play if possible or add it to their hand.
More high quality resources available here.
Elf Off the Shelf Resources
Light - Lenses, the Eye, Pinhole Camera and Camera - Wildcard and Snap Card Games
A great way to consolidate learning on lenses, the eye, the pinhole camera and the camera with this pack of cards which can be used to play two games – wildcard and snap.
Prior Knowledge Required
Convex lenses are used in magnifying glasses, telescopes and spectacles to correct long sight.
Concave lenses are used in lasers, flashlights, peepholes and spectacles to correct short sight.
Label the following structures on a diagram of the eye; retina; ciliary muscle; iris; pupil; lens; suspensory ligament; optic nerve.
Draw ray diagrams and explain how the eye sees distant and close objects.
Draw ray diagrams and explain how lenses are used to correct long and short sight.
Draw diagrams and explain how the iris controls the size of the pupil and therefore the amount of light which enters the eye.
Draw a ray diagram of the pinhole camera, know that the image is inverted sand diminished, moving the object closer enlarges the image and multiple pinholes produce multiple images
Label a diagram of the camera and explain how a picture is taken.
The differences and similarities between the eye and the camera.
What You Get
66 playing cards
Animated PowerPoint with instructions for playing wildcard and snap
More high quality resources available here.
Elf Off the Shelf Resources
Light - Reflection in Plane Mirrors KS3- Fully Resourced Lesson
What’s Covered
Transparent, translucent and opaque materials
Luminous and non-luminous objects
Labelling the incident and reflected rays, the angles of incidence and reflection, the normal and the point of incidence
Virtual experiment to prove i = r
Ray diagram showing how the eye sees an image in a plane mirror
The image formed in a plane mirror is upright, virtual (appears to be formed behind the mirror) laterally inverted, the same size as the object and as far behind the mirror as the object is in front.
Ray diagram showing how the eye sees an image in a periscope
Specular and diffuse images
What’s Included
Animated PowerPoint for teaching with exit ticket quiz
Flip it (pupil writes questions to given answers)
Anticipation Guides (combined starter and plenary)
Foldable
Cut and stick activity.
Worksheet (x4) to support the PowerPoint
Fact sheet
Homework
Fact share worksheet
Pupil progress self-assessment checklist
Exit Ticket
Suggested lesson plan showing choices possible between resources
This pack contains sixteen printable resources as it is intended that the teacher uses them to build their own unique lesson to take account of student ability and time available. Literacy, oracy, self-assessment and peer assessment are all built in to the resources. These features are clearly marked on the comprehensive one-page flow chart lesson plan which shows where the logical choices between resources can be made.
More high quality resources available here.
Elf Off the Shelf Resources
Light - Reflection - Wildcard & Snap Card Games KS3
A great way to consolidate reflection in a plane mirror with this pack of cards which can be used to play three different card games. So much fun, students don’t even realise they are learning!
Prior Knowledge Required
Transparent, translucent and opaque materials
Luminous and non-luminous objects
Labelling the incident and reflected rays, the angles of incidence and reflection, the normal and the point of incidence
Ray diagram showing how the eye sees an image in a plane mirror
The image formed in a plane mirror is upright, virtual (appears to be formed behind the mirror) laterally inverted, the same size as the object and as far behind the mirror as the object is in front.
Ray diagram showing how the eye sees an image in a periscope
Specular and diffuse images
What You Get
78 playing cards
Animated PowerPoint with instructions for playing wildcard and snap
More high quality resources available here.
Elf Off the Shelf Resources
Light - Refraction Explained - Distance Learning and Homeschool for KS3
This is an action-packed distance learning or home school introduction to refraction.
This resource has been designed so that the animated PowerPoint replaces the teacher by providing structure, sequence, knowledge and answers. The worksheets, cut-outs, foldable and progress check provide a familiar medium for students to develop and test their knowledge, continue to develop their literacy skills and use their creativity to organise their learning and assess their progress.
The simulated practical shows how measurements for the angles of incidence and reflection when light is refracted through a glass block are obtained and provides a set of results for the students to draw a conclusion.
What’s Covered
The more dense the medium the slower the speed of light.
When light travels from a less dense medium to a more dense medium it is bent towards the normal.
When light travels from a more dense medium to a less dense medium it is bent away from the normal.
Light hitting a boundary at 900 is not refracted.
Light is not refracted at a curved boundary.
Complete ray diagrams showing refraction.
Design an experiment and results table to investigate refraction through a semi - circular glass block
Why lightning is seen before thunder is heard when a cloud discharges.
Real and apparent depth.
Resources
An animated PowerPoint which guides the student through the lesson by:
explaining how to use distance learning effectively;
explaining how to use this resource;
explaining current, voltage and resistance and the relationship between them;
providing the answers to all the worksheets so that the students can mark and correct their work.
Four worksheets, and two cut-out activities, the answers to which are in the PowerPoint.
A foldable and cut-out activity so that students can record and organise their learning.
A checklist for students to use to assess their progress.
Digital quick test
For those students without internet or a computer or a computer at home a condensed printable copy of the PowerPoint is provided for distribution by school.
Ways to Use this Resource
Upload PowerPoint and worksheets to school intranet. Students print their own worksheets.
Upload PowerPoint and worksheets to school intranet and provide a hardcopy of worksheets for students. Those families who do not wish to collect worksheets or who are in isolation can print the worksheets at home.
Students without photocopying facilities are instructed to write their answers in full sentences
More high quality resources available here.
Elf Off the Shelf Resources
Light - Lenses, The Eye, Pinhole Camera and Camera - Distance Learning and Homeschool KS3
This is an action-packed distance learning or home school introduction to lenses including the eye, the pinhole camera and the camera.
This resource has been designed so that the animated PowerPoint replaces the teacher by providing structure, sequence, knowledge and answers. The worksheets, cut-outs, foldable, fact sheets and progress check provide a familiar medium for students to develop and test their knowledge, continue to develop their literacy skills and use their creativity to organise their learning and assess their progress.
What’s Covered
Ray diagrams showing refraction in a concave and convex lens.
Convex lenses are used in magnifying glasses, telescopes and spectacles to correct long sight.
Concave lenses are used in lasers, flashlights, peepholes and spectacles to correct short sight.
Label the following structures on a diagram of the eye; retina; ciliary muscle; iris; pupil; lens; suspensory ligament; optic nerve.
Draw ray diagrams and explain how the eye sees distant and close objects.
Draw ray diagrams and explain how lenses are used to correct long and short sight.
Draw diagrams and explain how the iris controls the size of the pupil and therefore the amount of light which enters the eye.
Draw a ray diagram of the pinhole camera, know that the image is inverted sand diminished, moving the object closer enlarges the image and multiple pinholes produce multiple images
Label a diagram of the camera and explain how a picture is taken.
Explain the differences and similarities between the eye and the camera
Resources
An animated PowerPoint which guides the student through the lesson by:
explaining how to use distance learning effectively;
explaining how to use this resource;
explaining current, voltage and resistance and the relationship between them;
providing the answers to all the worksheets so that the students can mark and correct their work.
Four worksheets, and two cut-out activities, the answers to which are in the PowerPoint.
A foldable and cut-out activity so that students can record and organise their learning.
Pinhole camera template.
A checklist for students to use to assess their progress.
Three fact sheets
Digital quick test
For those students without internet or a computer or a computer at home a condensed printable copy of the PowerPoint is provided for distribution by school.
Ways to Use this Resource
Upload PowerPoint and worksheets to school intranet. Students print their own worksheets.
Upload PowerPoint and worksheets to school intranet and provide a hardcopy of worksheets for students. Those families who do not wish to collect worksheets or who are in isolation can print the worksheets at home.
Students without photocopying facilities are instructed to write their answers in full sentences
More high quality resources available here.
Elf Off the Shelf Resources
Light - Dispersion, White Light & Colour Filters - Find the Pair Game KS3
This is an engaging and enjoyable memory game on white light, dispersion and color filters for middle school. Pupils work in teams of three or four. Each team lays out their 42 cards face down in a square and take it in turn to turn over two cards. If the cards are a question and its correct answer, the pupil keeps the pair. If they are not a match they are turned face down and the next pupil gets a turn. This process continues until all cards are matched and the winner is the pupil with the most pairs.
If a team member thinks that the selectors pair is not a correct match, they can challenge.
Pupils are encouraged to check their books for the correct answer but the teacher also has a quick-check answer sheet. If the challenge is correct, the challenger keeps the pair.
Included in this Pack.
42 question and answer cards
Teacher’s answer sheet.
Instruction sheet
Preparation
Use double-sided printing to copy 1 set per group of 4 pupils.
Sheets could be laminated to enable year-on-year use.
Cut sheets into cards.
Prior Knowledge Required
The order of the seven colours of the spectrum
Dispersion is the separation of white light into the seven different colors of the spectrum.
During dispersion, red light is refracted the least and violet light the most.
Dispersion is caused by the fact that each colour of light travels at a different speed in glass.
Red, green and blue are primary light colors.
Magenta, cyan and yellow are secondary light colors.
Mixing two primary light colours gives a secondary light color.
Mixing the three primary light colors gives white light.
An object only reflects light the same color as itself and absorbs all the others
Work out the color an object appears in different light color
More high quality resources available here.
Elf Off the Shelf Resources
Current Electricity Christmas Enquiry KS3
Electricity Christmas Enquiry
This is a fully differentiated and resourced enquiry/investigation into how to brightly light a model nativity scene for the hall .
Suitable for UK levels 3 to 5.
The fully animated PowerPoint systematically takes the pupils through the stages of planning, developing and reflecting.
Enough material for 2 to 3, one hour lessons, depending on ability.
Sections of the PowerPoint are easily selected or skipped.
.
Challenging questions for more able pupils but clicking to the next slide provides support for those who need it.
Equipment per group- two batteries or a powerpack, two lamps in holder, connectingwires.
Groups of 3 to 4 pupils ideal.
Buy this resource. Leave a review. Send an email, with your selection of one of my other resources up to £5 to:
elfofftheshelfresources@gmail.com
I will email you your free resource.
This lesson is part of a 14 - lesson module which meets the requirements of the NC for current electricity in totality.
Individual lessons £4. Bundle of 12 fully resourced lessons is £20 and bundle of 12 PowerPoints only is £14.
Follow the links below to visit the other lessons in this module.
Current, Voltage and Resistance Fully Resourced lesson Free Download
**Conductors and Insulators – Fully Resourced Lesson
Circuits and Symbols – Fully Resourced Lesson
Lamps in Series and Parallel – Fully Resourced Lesson
Current Electricity KS3 Fully Resourced Module
PowerPoints Only for whole Module**
KS3 Forces Enquiry/Investigation
The A to Z of an enquiry. This is a fully differentiated and resourced enquiry/investigation into how the surface affects the amount of friction. It is suitable for UK levels 3 to 5 and some elements will start more able pupils thinking about some aspects of level 6 work. It consists of a 27 - slide slideshow and systematically takes the pupils through the stages of planning, developing and reflecting. The whole slideshow contains enough material for 3 to 4, one hour lessons depending on ability. The whole slideshow need not be covered and has been designed so that it is easy to select any sections that are required. It has also been designed so that there are challenging questions for more able pupils but clicking to the next slide provides support for those who need it. Many of the slides are animated.
The resource has been designed to be sufficiently versatile so as to be suitable as not only as an introduction to enquiry/investigation at secondary level but also for those pupils starting upon the transition from level 5 to level 6. It is full of tips on how to tackle the various parts of an enquiry which pupils will find beneficial for those enquiries they tackle in the future and for coping with enquiry-type questions in examinations.
The lessons are easy to follow, enjoyable and easy to teach.
Apparatus needed per group is a newtonmeter and a 1Kg mass. I suggest you have an idea of the 5 surfaces to be used in advance and have a selection of different size newtonmeters available. I use the lab floor, the bench, the carpet in the corridor, a wooden dissection board and a Perspex safety screen. Groups of 3 or 4 are ideal.
Content
Definitions of independent, dependent and control variable, fair test and reliability.
The problem posed is “Does surface affect the amount of friction”.
Planning the enquiry with a worksheet to accompany which includes peer assessment and pupil response to assessment.
Identification of variables
Writing a prediction
Writing success criteria
Designing a table
What is an anomalous result and how to recognise it.
Improvements
Selection of the correct type of graph
How to draw the perfect bar graph (animated)
Reliability and bias
Reflecting on success criteria and learning strategies.
I hope your classes enjoy this and do as well as mine.
Please remember to leave a review.
Why not have a look at my shop?
https://www.tes.com/teaching-resources/shop/penyrheol1
Current Electricity KS3 - 39 Worksheets/Homeworks
39 original, differentiated and challenging homework/worksheets covering current electricity at KS3 in its entirety. The topics included are:
Current, Voltage and Resistance
Conductors and Insulators
Circuits and Symbols
Lamps in Series and Parallel
Current in Series and Parallel
Voltage in Series and Parallel
Does the Number of Batteries Affect Current? Why.
Does the Number of Batteries Affect Voltage? Why.
Does Resistance Affect Current? Why?
Switches in series and parallel
Ohms Law
Each topic comes with a detailed answer/mark scheme PowerPoint to make self-assessment and peer assessment easier.
Also Available
Fully resourced lessons on each of the above topics are available. In addition to the worksheets/homeworks and mark schemes shown here, each topic comes with an animated PowerPoint and at least nine other resources. Resources place an emphasis on literacy, oracy and assessment for learning. The format of each PowerPoint is to explain the concept, guide the pupil through planning/conducting the practical and conclude. Each animated PowerPoint includes an exit ticket class quiz for instant feedback to the teacher on learning.
The module is available as money-saving bundles or individual topics.
Intro to Current Electricity 1
Intro to Current Electricity 2
Intro to Current Electricity 3
Intro to Current Electricity 4
Current Electricity KS3 – The Complete Module
Elf Off the Shelf Shop
Plant and Animal Cells - Structure, Differences and Specialisation Board Game KS3
This is a challenging, engaging and enjoyable boardgame, for up to six pupils per set, with 54 question cards on the structure and differences between plant and animal cells and cell specialisation. The specialised cells included are:
• red blood cells;
• root hair cells;
• fat cells;
• palisade cells;
• sperm cells;
• egg cells;
• nerve cells,
• ciliated cells.
Included in this Pack
• Game board
• 54 Question cards with questions of varying difficulty
• Teacher answer sheet
• Instruction sheet.
Preparation
• Photocopy game board onto A3 paper or card (Colour and greyscale versions included).
• Photocopy question sheets onto paper or card (Colour and greyscale versions included) and cut into question cards.
How to Play
• Highest score of dice starts
• Pupils take turns and work their way around the board following the instructions in the squares.
• Certain squares instruct the pupil to take a question card from the face down pile. If correct they move on 2 spaces.
• If a player thinks an answer given by an opponent is incorrect they can challenge. If the challenge is correct the challenger moves forward 2 spaces. If the challenge is wrong the challenger moves back two spaces.
• In the event of a challenge, pupils are encouraged to consult their books but the teacher has a quick-check answer sheet.
Fully resourced and differentiated lessons on these topics are available.
Plant and Animal Cells - Structure and Differences KS3
Cell Specialisation KS3
Plant and Animal Cells - Structure, Differences and Specialisation
Plant and Animal Cells, Structure and Differences KS3 - Fully Resourced Revision Lesson or Plenary
Specialised Cells KS3 - Fully Resourced Revision Lesson or Plenary
Plant and Animal Cells KS3 - 42 Question Card Sort Team Game
More resources available at my shop
Elf Off the Shelf Shop
Current Electricity - KS3 Whole Module Revision Lesson
This lesson covers the whole KS3 current electricity module:
Explaining current, voltage and resistance
Explaining conductors and insulators
Current, voltage, lamps and switches in series and parallel circuits
Current and voltage varies with number of batteries
Ohms Law
What You Get
Sheet for fact share activity
Fact Sheet
Smart Board Quiz - Question and answer PowerPoints
Two worksheets – differentiated.
Answer/mark scheme PowerPoint
Sheet for pupils to record quiz answers
Suggested lesson plan (one-page flow chart)
Lesson structure
With the question version of the quiz on the interactive whiteboard, pupils write their answers on their recording sheet. This quiz has a built-in timer for each question but the teacher has control of movement between slides to move from question to question.
The answer version of the quiz is then put on the IWB and pupils mark their answers. This version also shows the questions so it is easy for the teacher to go through any explanations necessary.
The facts on the fact sheet are mapped to the question numbers in the quiz. Pupils now match and colour on the fact sheet, the numbers of the questions they had wrong on the pupil recording sheet. They then have, to take away with them, a clear and permanent record of facts to be learned.
Pupils then tackle the worksheet which is differentiated over two versions.
Finally pupils use the answer/mark scheme PowerPoint to either self-assess or peer assess their answers to the worksheet.
The module is available as money-saving bundles or individual topics.
Intro to Current Electricity 1
Intro to Current Electricity 2
Intro to Current Electricity 3
Intro to Current Electricity 4
Current Electricity KS3 – The Complete Module
Respiration - GCSE (9-1) Revision
Covered in this Resource
Relate surface area to volume ratio to gaseous diffusion in unicellular or small animals and the need for respiratory and transport systems in larger animals.
Respiration as an exothermic reaction controlled by enzymes which produces ATP as a result of breaking down glucose.
Aerobic respiration occurs in mitochondria of all cells and requires oxygen and produces CO2 and H2O
Anaerobic respiration occurs in muscle cells during vigorous activity when there is little oxygen, produces lactic acid, creates oxygen debt and less ATP per glucose molecule than aerobic respiration.
Role played by intercostal muscles and diaphragm during inhalation and exhalation.
Label the respiratory system.
Compare the composition of inhaled and exhaled air.
Function of cilia.
Effect of smoking on cilia, emphysema and smokers cough.
What You Get
Sheet for fact share activity
Fact Sheet
Smart Board Quiz - Question and answer PowerPoints
Two worksheets – differentiated.
Answer/mark scheme PowerPoint
Sheet for pupils to record quiz answers
Suggested lesson plan (one-page flow chart)
Lesson structure
With the question version of the quiz on the interactive whiteboard, pupils write their answers on their recording sheet. This quiz has a built-in timer for each question but the teacher has control of movement between slides to move from question to question.
The answer version of the quiz is then put on the IWB and pupils mark their answers. This version also shows the questions so it is easy for the teacher to go through any explanations necessary.
The facts on the fact sheet are mapped to the question numbers in the quiz. Pupils now match and colour on the fact sheet, the numbers of the questions they had wrong on the pupil recording sheet. They then have, to take away with them, a clear and permanent record of facts to be learned.
Pupils then tackle the worksheet which is differentiated over two versions.
Finally pupils use the answer/mark scheme PowerPoint to either self-assess or peer assess their answers to the worksheet.
More resources available at my shop
Elf Off the Shelf Shop
Respiration Board Game GCSE (9-1) KS4
An ideal activity for the end of the topic or revision. This is a challenging, engaging and enjoyable board game, for up to six pupils per set, with 54 question cards on the basics of current electricity including:
Relate surface area to volume ratio to gaseous diffusion in unicellular or small animals and the need for respiratory and transport systems in larger animals.
Respiration as an exothermic reaction controlled by enzymes which produces ATP as a result of breaking down glucose.
Aerobic respiration occurs in mitochondria of all cells and requires oxygen and produces CO2 and H2O
Anaerobic respiration occurs in muscle cells during vigorous activity when there is little oxygen, produces lactic acid, creates oxygen debt and less ATP per glucose molecule than aerobic respiration.
Role played by intercostal muscles and diaphragm during inhalation and exhalation.
Label the respiratory system.
Compare the composition of inhaled and exhaled air.
Function of cilia.
Effect of smoking on cilia, emphysema and smokers cough.
Included in this Pack.
Game board
54 Question cards with questions of varying difficulty
Teacher answer sheet
Instruction sheet.
Preparation
Photocopy Board onto A3 paper or card (Colour and greyscale versions included).
Photocopy question sheets onto paper or card (Colour and greyscale versions included) and cut into question cards.
How to Play
Highest score of dice starts
Pupils take turns and work their way around the board following the instructions in the squares.
When landing on the thinker emoji the pupil takes a question card from the face down pile. If correct they move on 2 spaces.
If a player thinks an answer given by an opponent is incorrect they can challenge. If the challenge is correct the challenger moves forward 2 spaces. If the challenge is wrong the challenger moves back two spaces.
In the event of a challenge, pupils are encouraged to consult their books but the teacher has a quick-check answer sheet.
Fully resourced revision lesson on respiration.
Respiration GCSE (9 - 1)
More resources available at my shop
Elf Off the Shelf Shop