These free lessons show how the study of architecture supports the teaching of maths in junior & secondary schools. If you are attracted to the use of geometry of architecture to support your lesson plans but this is your first time, you may experience an unaccustomed enthusiasm in the classroom with a high demand for your attention. This may put you under pressure, leading you to give up. Be patient. Keep going. Have an assistant. Students will soon grasp the concepts.
These free lessons show how the study of architecture supports the teaching of maths in junior & secondary schools. If you are attracted to the use of geometry of architecture to support your lesson plans but this is your first time, you may experience an unaccustomed enthusiasm in the classroom with a high demand for your attention. This may put you under pressure, leading you to give up. Be patient. Keep going. Have an assistant. Students will soon grasp the concepts.
This lesson develops the theme of the ogee or s-shaped arch (see relevant lesson plan).
In the church window at Finedon, the apex comprises a vesica atop two vesicas that are curved at top and bottom into ogees, all in a net-like arrangement.
The apex is set above three lights with ogee arches. This type of tracery is termed reticulated Curvilinear.
School Curriculum: This is the first of four studies of different types of Decorative window. Each has a design that is an arrangement of circles or arcs with the same radii, within a defined perimeter, with or without overlaps. An analysis of the windows at Finedon reveals that the architect simply stacked a series of congruent windows and equilateral triangles.
The windows studied are within: the Church of St Mary the Virgin in Finedon: the only window with overlaps;
St Thomas of Canterbury, Northaw (available on another page);
Altrincham Baptist Church (ditto);
and Lincoln Cathedral (ditto).
This series of lessons is well suited to project work at IB / GCSE level.
However it arose, the ogee arch rapidly led to the development of many different tracery designs. Whereas earlier windows had a static non-directional element, now the ogee enable both mullions and tracery to intersect, curve and flow from one shape to another with an arabesque character that became known as Curvilinear tracery.
In Asia Minor the horseshoe arch has long been a structural and decorative motif adorning tombs, sarcophagi and stele. After the Eastern Christian Church adopted the shape it quickly spread to North Africa, Spain, Gaul, Italy and Rome itself.
How to draw a horseshoe arch:
School curriculum: Key Stage 4: measurement of arc length
Maths covered:
Arc length is the distance between two points on a curve. and is usually denoted by l or s, the latter from the Latin spatium meaning length or size.
s = (θ° ÷ 360°) x 2 π r
where theta θ is a measure of the angle subtended by either ci-e-di & co-e-do (fig. on lesson plan in degrees, π = 3.14 and r = the distance ae (fig.) in centimetres
If the arc is a semicircle
then s = π r
This lesson would serve as an extension of the lesson on a Roman arch and brace, itself extended by the lesson on a Romanesque or Norman arch
This exercise builds on earlier lessons on Gothic Early English architecture. It is a complex drawing suitable for top set project work for GCSE students
Content: the first exercise is a simple construction of a quatrefoil. It is followed by detailed and illustrated instructions on how to draw two adjoining trefoiled lights under a arched dripstone. The instructions that follow fills the apex above the two lights with a quatrefoil, with an option to do so with a pointed quatrefoil.
Key Stage 2 & 3 mathematics: Rotational symmetry occurs when a shape, on being rotated around a centre point a number of degrees, appears the same. The order of symmetry is the number of positions that a shape appears the same in a 360-degree rotation. An equilateral triangle has rotational symmetry of order three, i.e. it may be turned about its centre point into three identical positions. A trefoil and a pointed trefoil (see appropriate lesson plan), being constructed on an equilateral triangle, may be turned about their centre points into three identical positions, i.e. both have rotational symmetry of order three.
Key Stage 4 mathematics: A circle which touches the three vertices of a triangle is called the circumcircle of a triangle. The centre of a circumcircle is the point where all the perpendicular bisectors of the triangle’s sides meet. This point is called the circumcentre. The radius of the circumcircle is termed the triangle’s circumradius.
Having drawn a regular polygon, arcs can be drawn with their centre points at the vertices of the polygon, and the radii equal to half the length of the edges of the polygon. In this way a trefoil, quatrefoil, cinquefoil or multifoil is formed when each arc just touches its neighbours.
In 1254 a Catholic religious order was founded in France called the Order of Saint Augustine. Monks of this Order followed the teachings of St Augustine of Hippo who, in the fifth century, advocated the virtues of chastity, poverty and obedience as essential for a religious life. The monks were obliged to live together in peace and harmony, to share labour, pray together, and eat in silence. They were also to look after the sick.
Pilgrims flocked to their monasteries one of which was the Sanctuary of Rocamadour in South-West France. It is a spectacular monastery built into the side of a cliff on the pilgrim route known as the Way of St James. Unusually it has made use of lancet and trefoil design for an entrance.
How to draw an ogee arch
Illustrated and easy-to-follow instructions on how to draw an ogee arch.
The ogee or S-shaped arch is the principal architectural feature of the Decorated period church window. The ogee as an architectural motif has a long history: it had been used in India in antiquity; it arrived in Egypt in the ninth century, then in Venice in the thirteenth. Soon after it appearance in Venice, it turned up in England. Theories explaining the ogee’s appearance in England are explored.
School Curriculum: Key Stage 3 Mathematics: Draw and manipulate triangles, arcs and semicircles with increasing accuracy; identify their properties, including line symmetry.
This lesson is suitable for more able pupils at Key Stage 2 and most pupils at Key Stage 3. It is an exercise in drawing the frontal elevation of a Classical Doric temple. It reinforces skills in measuring, the accurate drawing of straight lines, and using a protractor.
Drawing a Doric temple supports the teaching of 2-D shapes in a novel and imaginative way, and covers the definitions and properties of rectangles and isosceles triangles.
Studying the geometry of a Classical Ionic column can be undertaken with satisfying results at Key Stage, 2, 3 & 4.
At Key Stage 2 & Drawing a volute with semicircles enables students to create a pattern with repeating shapes in different sizes and orientations.
Students will thereby become familiar with the properties of a circle (circumference, radius & diameter).
At Key Stage 4 drawing a volute with quadrants will facilitate the calculation of arc length subtended by those quadrants.