pptx, 2.16 MB
pptx, 2.16 MB
docx, 504.4 KB
docx, 504.4 KB
docx, 14.48 KB
docx, 14.48 KB

This lesson describes how to use the magnification formula to calculate the magnification or the actual size in a range of units. The PowerPoint and accompanying resources have been designed to cover the 3rd part of point 2.1.3 of the AQA A-level Biology specification

The students are likely to have met the magnification formula at GCSE so this lesson has been written to build on that knowledge and to support them with more difficult questions when they have to calculate actual size without directly being given the magnification. A step by step guide is used to walk the students through the methodology and useful tips are provided. Students could be asked to calculate the actual size in millimetres, micrometres, nanometres or picometres so time is taken to ensure that they can convert between one and another.

This lesson has been written to tie in with the previous two lessons on microscopes and measuring the size of an object and the two rounds of the ongoing quiz competition take place in this lesson.

Get this resource as part of a bundle and save up to 30%

A bundle is a package of resources grouped together to teach a particular topic, or a series of lessons, in one place.

Bundle

Topic 2: Cells (AQA A-level Biology)

This bundle contains 20 PowerPoint lessons, and all are highly-detailed and are fully-resourced with differentiated worksheets. Intricate planning means that the wide range of activities included in these lessons will engage and motivate the students, check on their current understanding and their ability to make links to previously covered topics and most importantly will deepen their understanding of the following specification points in topic 2 (Cells) of the AQA A-level Biology specification: * Structure and function of the organelles in eukaryotic cells * The specialised cells in complex, multicellular organisms * The structure of prokaryotic cells * The structure of viruses which are acellular and non-living * Measuring objects under an optical microscope * Use of the magnification formula * The principles of cell fractionation and ultracentrifugation * The behaviour of chromosomes during the stages of the cell cycle * Calculating the mitotic index * Uncontrolled cell division leads to the formation of tumours and cancer * Binary fission * The basic structure of cell membranes * The role of phospholipids, proteins, glycoproteins, glycolipids and cholesterol * Simple diffusion * Facilitated diffusion * Osmosis, explained in terms of water potential * The role of carrier proteins and the hydrolysis of ATP in active transport * Co-transport as illustrated by the absorption of sodium ions and glucose by the cells lining the mammalian ileum * Recognition of different cells by the immune system * The identification of pathogens from antigens * The phagocytosis of pathogens * The cellular response involving T lymphocytes * The humoral response involving the production of antibodies by plasma cells * The structure of an antibody * The roles of plasma cells and memory cells in the primary and secondary immune response * The use of vaccines to protect populations * The differences between active and passive immunity * The structure of the human immunodeficiency virus and its replication in helper T cells * Why antibiotics are ineffective against viruses * The use of antibodies in the ELISA test If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses, osmosis, lymphocytes, HIV and AIDS lessons as these have been shared for free. I have also uploaded lessons on optical microscopes and HIV and AIDS (for free) but neither are included in this bundle as the limit of 20 resources has been reached!

£30.00
Bundle

Maths in A-level Biology (AQA A-level Biology)

"Overall, at least 10% of the marks in assessments for biology will require the use of mathematical skills" This sentence is taken directly from the AQA A-level Biology specification and clearly shows that being able to apply these skills in the context of biology will have a significant impact on a student's chances of success. This bundle has been created to cover as much of those mathematical skills as possible A revision lesson is also included in this bundle which acts as a fun and engaging revision of the range of calculations

£15.00
Bundle

Methods of studying cells (AQA A-level biology)

This bundle of 4 lessons have been intricately planned to cover the detailed content of topic 2.1.3 of the AQA A-level biology specification. This topic, titled "methods of studying cells", isn't every student's cup of tea, so the lessons have been deliberately filled with a range of engaging tasks, including a quiz competition that runs across the 4 lessons. These quizzes act to introduce key terms and numbers in a memorable way and also check on knowledge from the current lesson or previous topics. If you would like to observe the quality of lessons in this bundle, then download the optical and electron microscopes lesson as this has been uploaded for free.

£7.50
Bundle

Topic 2.1: Cell structure (AQA A-level Biology)

This bundle of 9 lesson PowerPoints and accompanying resources contain a wide variety of tasks which will engage and motivate the students whilst covering the details of topic 2.1 of the AQA A-level Biology specification. Cells and their structure are linked to all of the other 7 topics in this course so a clear understanding is critical to a student's success. The tasks which include exam-style questions (with displayed mark schemes), discussion points and quiz competitions will cover the following parts of topic 2.1: * The structure and function of the cell-surface membrane, nucleus, nucleolus, mitochondria, chloroplasts, Golgi apparatus, lysosomes, ribosomes, RER and SER, cell wall and cell vacuole * The specialised cells of complex, multicellular organisms * The structures of a typical prokaryotic cell * The differences between prokaryotic and eukaryotic cells * The structure of viruses * The principles and limitations of optical microscopes, transmission electron microscopes and scanning electron microscopes * Measuring the size of an object using an optical microscope * Using the magnification formula * The principles of cell fractionation and ultracentrifugation If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses and microscopes lessons as these have been uploaded for free

£14.00

Reviews

Something went wrong, please try again later.

This resource hasn't been reviewed yet

To ensure quality for our reviews, only customers who have purchased this resource can review it

Report this resourceto let us know if it violates our terms and conditions.
Our customer service team will review your report and will be in touch.