This fully-resourced lesson describes the action of enzymes as biological catalysts and explains how their specificity is related to their 3D structure. The engaging PowerPoint and accompanying resources have been designed to cover points 2.10 (i) and (ii) of the Pearson Edexcel A-level Biology A specification but also introduces some examples of intracellular and extracellular enzymes to prepare students for the next lesson which covers 2.10 (iii).
The lesson has been specifically planned to tie in with related topics that were previously covered such as protein structure, globular proteins and intracellular enzymes. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers.
Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction.
The lesson finishes with a focus on ATP synthase and DNA polymerase so that students are aware of these important intracellular enzymes when learning about the details of respiration and DNA replication.
Something went wrong, please try again later.
This resource hasn't been reviewed yet
To ensure quality for our reviews, only customers who have purchased this resource can review it
Report this resourceto let us know if it violates our terms and conditions.
Our customer service team will review your report and will be in touch.