Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1215k+Views

2022k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Using ECGs (Edexcel A-level Biology)
GJHeducationGJHeducation

Using ECGs (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the use of electrocardiograms to aid the diagnosis of CVD and other heart conditions. The engaging PowerPoint and accompanying resources have been designed to cover point 7.8 (iii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also make continual links to earlier specification points like 1.4 and 1.5 where heart topics were previously covered. The lesson has been written to take place in an imaginary cardiology ward where the students are initially challenged on their knowledge of the symptoms and risk factors of CVD before looking at testing through the use of ECGs and diagnosis. The main focus of the lesson is the ECG and a quiz competition is used to introduce the reference points of P, QRS and T before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem. This lesson has been designed to tie in with the lesson that covers the previous specification point on the normal electrical activity of the heart and the myogenic nature of cardiac muscle
The uses of triose phosphate (OCR A-level Biology)
GJHeducationGJHeducation

The uses of triose phosphate (OCR A-level Biology)

(0)
This fully-resourced lesson describes how TP is a starting material for the synthesis of carbohydrates, lipids and amino acids as well as being recycled to regenerate RuBP in the Calvin cycle. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.2.1 (f) of the OCR A-level Biology A specification concerning the uses of TP but as the lesson makes continual references to biological molecules, it can act as a revision tool for the content of module 2.1.2. The previous lesson covered the light-independent stage and this lesson builds on that understanding to demonstrate how the product of the Calvin cycle, triose phosphate, is used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the TP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from TP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this module on the structure of the chloroplast and the light-dependent and light-independent stages of photosynthesis.
Transmission of animal and plant pathogens (OCR A-level Biology A)
GJHeducationGJHeducation

Transmission of animal and plant pathogens (OCR A-level Biology A)

(0)
This lesson describes the means of transmission of animal and plant communicable pathogens, including direct and indirect transmission. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (b) of the OCR A-level Biology A specification but intricate planning ensures that the students are constantly challenged on their recall of the content of the previous lesson, where the different types of pathogens that cause communicable diseases in plants and animals was covered. The lesson contains a wide range of tasks which will engage the students whilst challenging them to think about the biological content. Relevant examples such as the UK government’s public message of “HANDS, FACE, SPACE” are used to explain how TB and HIV are directly transmitted through droplet infection or the exchange of bodily fluids. A series of exam-style questions challenge the students on their knowledge of the transmission of HIV and the mark scheme is embedded into the PowerPoint to allow them to assess their progress. Students will learn that although HIV is mainly a sexually transmitted infection, the sharing of needles by intravenous drug users and vertical transmission from a mother to foetus (or baby) are other mechanisms for the spread. Moving forwards, the next part of the lesson focuses on the transmission of cholera and malaria in unsafe water and through a vector respectively. Time is taken to emphasise the meaning of a vector and student understanding is checked later in the lesson when discussing the spread of the fungus responsible for Dutch elm disease by the elm beetle. The effect of climate and social factors are also considered, and the outbreak of cholera in Yemen in 2016 is used to introduce a number of the social determinants that affect transmission. The final part of the lesson describes the direct and indirect means of transmission of plant pathogens and biological examples are sourced to increase the relevance.
Double circulatory system (Edexcel A-level Biology B)
GJHeducationGJHeducation

Double circulatory system (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the advantages of the double circulatory system that is found in mammals. The engaging PowerPoint and accompanying resources have been designed to cover point 4.4 (ii) of the Edexcel A-level Biology B specification and focuses on the differences in pressure between the pulmonary and systemic circulation. The lesson begins with a focus on the meaning of a double circulatory system and checks that students are clear in the understanding that the blood passes through the heart twice per cycle of the body. Beginning with the pulmonary circulation, students will recall that the pulmonary artery carries the blood from the right ventricle to the lungs. An opportunity is taken at this point to check on their knowledge of inhalation and the respiratory system as well as the gas exchange between the alveoli and the capillary bed. A quick quiz is used to introduce arterioles and students will learn that these blood vessels play a crucial role in the changes in blood pressure that prevent the capillaries from damage. When looking at the systemic circulation, time is taken to look at the coronary arteries and renal artery as students have to be aware of these vessels in addition to the ones associated with the heart. In the final part of the lesson, students are challenged to explain how the structure of the heart generates a higher pressure in the systemic circulation and then to explain why the differing pressures are necessary.
Meiosis ensures genetic variation (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Meiosis ensures genetic variation (Edexcel Int. A-level Biology)

(0)
This detailed lesson describes how the crossing over of alleles and the independent assortment in meiosis contribute to genetic variation. The PowerPoint and accompanying resource have been designed to cover specification point 3.10 of the Edexcel International A-level Biology specification and includes describes how the fertilisation of the haploid gametes that were formed by meiosis increases variation further. In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations.
Assessing biodiversity (Edexcel A level Biology B)
GJHeducationGJHeducation

Assessing biodiversity (Edexcel A level Biology B)

(0)
This fully-resourced lesson describes how biodiversity can be assessed within a habitat at a species level and within a species at a genetic level. The engaging PowerPoint and accompanying resources have been primarily designed to cover point 3.3 (i) of the Edexcel A-level Biology B specification but as a lot of genetic content is covered when considering diversity within a species, this lesson can be used as an introduction to topic 8 material… A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise key terms from their definitions. This quiz introduces species, population, biodiversity, allele, recessive and dominant and each of these terms is put into context once introduced. Once biodiversity has been revealed, the students will learn that they are expected to be able to assess the biodiversity within a habitat and within a species. The variety of alleles in the gene pool of a population increases the genetic diversity so a number of examples are used to demonstrate how the number of phenotypes increases with the number of alleles at a locus. The CFTR gene is used to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). At this point, the students are introduced to codominance and again they are challenged to apply their understanding to a new situation by working out the number of phenotypes in the inheritance of blood groups. The rest of the lesson uses a step by step guide to complete a worked example to calculate an index of diversity. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise.
Meiosis (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Meiosis (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes the role of meiotic cell division, including a detailed explanation of how 4 genetically unidentical daughter cells are formed. The PowerPoint and accompanying resources have been designed to cover point 3.3 of the Edexcel GCSE Biology and Combined Science specifications. The students covered the mitotic cell cycle in topic 2 and their knowledge of this type of cell division is utilised throughout the lesson to help with the understanding of this cycle. The lesson begins by challenging the students to recall the meaning of diploid and they will learn that the parent cell at the start of the meiotic cell cycle is a diploid cell. Time is taken to remind them of the events of interphase and then the lessons focuses on the 2 sets of division in meiosis which produces four haploid daughter cells. The identity of these cells as gametes is emphasised. The final part of the lesson uses a series of exam questions to challenge the students on their understanding of the cycle and the mark schemes are embedded into the PowerPoint to allow the students to assess their progress.
mRNA modification (OCR A-level Biology)
GJHeducationGJHeducation

mRNA modification (OCR A-level Biology)

(0)
This fully-resourced lesson describes the control of gene expression at a post-transcriptional level through the removal of introns during splicing. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification and also explains how it’s possible for 1 gene to give rise to multiple products as a result of this post-transcriptional modification of mRNA. The lesson begins with a knowledge recall as the students have to recognise the definition of a gene as a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain. This description was introduced in module 2.1.3 and the aim of the start of the lesson is to introduce the fact that despite this definition, most of the nuclear DNA in eukaryotes doesn’t actually code for proteins. A quick quiz competition is then used to introduce exons as the coding regions within a gene before students are challenged to predict the name of the non-coding regions and then to suggest a function for these introns. At this point, the students will complete a task that acts as a prior knowledge check where they have to identify the 6 errors in the descriptive passage about the lac operon and its role in the regulation of gene expression in prokaryotes. Moving forwards, pre-mRNA as a primary transcript is introduced and students will learn that this isn’t the mature strand that moves off to the ribosome for translation. Instead, a process called splicing takes place where the introns are removed and the remaining exons are joined together. Another quick quiz round leads to an answer of 20000 and students will learn that this is the number of protein-coding genes in the human genome. Importantly, the students are then told that the number of proteins that are synthesised is much higher than this value and a period of class discussion encourages them to come up with biological suggestions for this discrepancy between the two numbers. The lesson concludes with a series of understanding and application questions where students will learn that alternative splicing enables a gene to produce more than a single protein and that this natural phenomenon greatly increases biodiversity
Structure of prokaryotic cells (WJEC A-level Biology)
GJHeducationGJHeducation

Structure of prokaryotic cells (WJEC A-level Biology)

(0)
This lesson describes the structure of a prokaryotic cell including the nucleoid, plasmid, 70S ribosomes and cell wall. The engaging PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons which have been designed to cover the details in specification point (b) in AS unit 1, topic 2 of the WJEC A-level Biology specification. This lesson has been specifically designed to be taught after the lesson on the structure of eukaryotic cells, specification point (a), so that comparisons can be drawn. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to come up with a 3-letter prefix that they believe will translate as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus which acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce so that students can recognise that prokaryotic cells do not contain centrioles
Nervous and hormonal control (Edexcel A-level Biology A)
GJHeducationGJHeducation

Nervous and hormonal control (Edexcel A-level Biology A)

(0)
This fully resourced lesson describes how coordination is brought about through nervous and hormonal control in animals. The detailed PowerPoint and accompanying resources have been primarily designed to cover point 8.7 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but it can also be used as a revision lesson as there are numerous prior knowledge checks of the nervous system, muscle contraction, protein structure and the control of gene expression. The lesson begins by challenging the students to recall that a control system contains sensory receptors, a coordination centre and effectors. The students will learn that the communication between these components is by cell signalling and that the effectors can be muscles which contract or glands that release chemicals. The next part of the lesson looks at the differing responses from the nervous and hormonal systems and discusses how this can be governed by the need for a rapid response or more of a long term effect. In terms of nervous control, the students are challenged on their recall of the sliding filament theory of muscle contraction as covered in topic 7. Moving forwards, the students will learn that hormones can be either peptide or steroid hormones and their action at a target cell differs based on their form. Students are tested on their knowledge of protein structure by a series of exam-style questions on insulin and glucagon. They are reminded that steroid hormones can pass directly through the cell membrane and their knowledge of the control of gene expression by transcription factors is tested through a task involving oestrogen and the ER receptor. The lesson concludes by reminding students that the control of heart rate, as covered in topic 7, is a coordinated response that involves both nervous and hormonal control.
Gene locus and linkage (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Gene locus and linkage (Edexcel Int. A-level Biology)

(0)
This clear and concise lesson describes the meaning of a gene locus and explains how the inheritance of two or more genes that have loci on the same chromosome demonstrates linkage. The engaging PowerPoint and associated resource have been designed to cover points 3.9 (i) and (ii) of the Edexcel International A-level Biology specification and makes clear links to the upcoming topic of meiosis when describing the effect of crossing over on this linkage This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be.
Dipeptides & polypeptides (AQA A-level Biology)
GJHeducationGJHeducation

Dipeptides & polypeptides (AQA A-level Biology)

(0)
This detailed lesson describes the formation of dipeptides & polypeptides and the relationship between the structure and roles of proteins in living organisms. Both the engaging PowerPoint and accompanying resources have been designed to cover the second part of point 1.4.1 of the AQA A-level Biology specification. The start of the lesson focuses on the formation of a peptide bond during a condensation reaction so that students can understand how a dipeptide is formed and therefore how a polypeptide forms when multiple reactions occur. The main part of the lesson describes the different levels of protein structure. A step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. Students will see the differences between globular and fibrous protein and again biological examples are used to increase relevance. The lesson concludes with one final quiz round called STRUC by NUMBERS where the students have to use their understanding of the protein structures to calculate a numerical answer.
Collagen & haemoglobin (Edexcel A-level Biology B)
GJHeducationGJHeducation

Collagen & haemoglobin (Edexcel A-level Biology B)

(0)
This detailed lesson describes how the structure of collagen and haemoglobin are related to their function. The engaging PowerPoint and accompanying worksheet have been designed to cover specification point 1.3 (v) of the Edexcel A-level Biology B course and also introduces fibrous and globular proteins as a result. The first part of the lesson looks at the structure of haemoglobin, and describes how the presence of an iron-containing haem group on the outside of the 4 polypeptide chains explains its ability to form oxyhaemoglobin. Moving forwards, the importance of the solubility of this protein is considered and related to the direction that the hydrophobic R groups point. At this point of the lesson, the students are challenged to construct a comparison table which can be filled in as the lesson progresses and as they are given more details of collagen. The section of the lesson concerning collagen begins with the introduction of its function in the artery wall so that students can recognise how fibrous proteins have roles associated with mechanical strength. Time is taken to discuss their solubility as well as the presence of repetitive amino acid sequences. The remainder of the lesson considers four more proteins and the final task challenges the students to use their completed table to write a summary passage comparing globular and fibrous proteins.
Rapid gas exchange (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Rapid gas exchange (Edexcel Int. A-level Biology)

(0)
This lesson describes how the structure of the mammalian lung is adapted for rapid gaseous exchange. The engaging PowerPoint has been designed to cover point 2.1 (iii) of the Edexcel International A-level Biology specification and focuses on the essential features of the alveolar epithelium as well as the mechanism of ventilation to maintain a steep concentration gradient for the simple diffusion of oxygen and carbon dioxide. Gas exchange at the alveoli is a topic that was covered at GCSE and considered during the previous lessons in topic 2.1 so this lesson has been written to challenge the recall of that knowledge and to build on it. The main focus of the first half of the lesson is the type of epithelium found lining the alveoli and students will discover that a single layer of flattened cells known as simple, squamous epithelium acts to reduce the diffusion distance. The following features of the alveolar epithelium are also covered: Surface area Moist lining Production of surfactant The maintenance of a steep concentration gradient is the role of the respiratory system and the next part of the lesson focuses on the diaphragm and intercostal muscles. As the mechanism of inhalation is a cascade of events, the details of this process are covered in a step by step format using bullet points. At each step, time is taken to discuss the key details which includes an introduction to Boyle’s law that reveals the inverse relationship between volume and pressure. It is crucial that students are able to describe how the actions of the diaphragm, external intercostal muscles and ribcage result in an increased volume of the thoracic cavity and a subsequent decrease in the pressure, which is below the pressure outside of the body. At this point, their recall of the structures of the mammalian gas exchange system is tested, to ensure that they can describe the pathway the air takes on moving into the lungs.
OCR A-level Biology GENETIC TERMINOLOGY
GJHeducationGJHeducation

OCR A-level Biology GENETIC TERMINOLOGY

(0)
This lesson acts as an introduction to part b of module 6.1.2 of the OCR A-level Biology A specification and focuses on 16 key genetic terms. In this module, students are expected to be able to demonstrate and apply their knowledge and understanding of genetic diagrams and phenotypic ratios to show patterns of inheritance and this is only possible with a clear understanding of the genetic terminology that will be used in related exam questions. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous
Diffusion & facilitated diffusion (WJEC A-level Biology)
GJHeducationGJHeducation

Diffusion & facilitated diffusion (WJEC A-level Biology)

(0)
This lesson describes how molecules move across the cell membrane by the transport mechanisms of (simple) diffusion and facilitated diffusion. The PowerPoint and accompanying resources are the first lesson in a series of 4 lessons which have been designed to cover the detail of point [c] in unit 1, topic 3 of the WJEC A-level Biology specification and the factors that increase the rate of diffusion are covered along with the limitations imposed by the phospholipid bilayer and the role of channel and carrier proteins. The structure and properties of cell membranes were described in the lesson covering point (a) of this topic, so this lesson has been written to include continual references to the content of that lesson. This enables links to be made between the movement across a cell membrane with the concentration gradient, the parts of the membrane that are involved and any features that may increase the rate at which the molecules move. A series of questions about the alveoli are used to demonstrate how a large surface area, a short diffusion distance and the maintenance of a steep concentration gradient will increase the rate of simple diffusion. One of two quick quiz rounds is then used to introduce temperature and size of molecule as two further factors that can affect simple diffusion. The remainder of the lesson focuses on facilitated diffusion and describes how transmembrane proteins are needed to move small, polar or large molecules from a high concentration to a lower concentration across a partially permeable membrane
Globular and fibrous proteins (Edexcel A-level Biology A)
GJHeducationGJHeducation

Globular and fibrous proteins (Edexcel A-level Biology A)

(0)
This detailed lesson uses haemoglobin and collagen as examples to describe the structure, properties and functions of globular and fibrous proteins. The engaging PowerPoint and accompanying worksheet have been designed to cover point 2.9 (iv) of the Pearson Edexcel A-level Biology A specification and focuses on the shape, solubility and function of these two types of protein. The first part of the lesson looks at the structure of haemoglobin, and describes how the presence of an iron-containing haem group on the outside of the 4 polypeptide chains explains its ability to form oxyhaemoglobin. Moving forwards, the importance of the solubility of this protein is considered and related to the direction that the hydrophobic R groups point. At this point of the lesson, the students are challenged to construct a comparison table which can be filled in as the lesson progresses and as they are given more details of collagen. The section of the lesson concerning collagen begins with the introduction of its function in the artery wall so that students can recognise how fibrous proteins have roles associated with mechanical strength. Time is taken to discuss their solubility as well as the presence of repetitive amino acid sequences. The remainder of the lesson considers four more proteins and the final task challenges the students to use their completed table to write a summary passage comparing globular and fibrous proteins.
Post-transcriptional changes (Edexcel A-level Biology A)
GJHeducationGJHeducation

Post-transcriptional changes (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how it’s possible for 1 gene to give rise to multiple proteins as a result of post-transcriptional changes to mRNA. The detailed PowerPoint and accompanying resources have been primarily designed to cover point 6.10 of the Pearson Edexcel A-level Biology A specification but also checks on the students knowledge and understanding of the lac operon as covered in topic 3. The lesson begins with a knowledge recall as the students have to recognise the definition of a gene as a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain. This description was introduced in topic 2 and the aim of the start of the lesson is to introduce the fact that despite this definition, most of the nuclear DNA in eukaryotes doesn’t actually code for proteins. A quick quiz competition is then used to introduce exons as the coding regions within a gene before students are challenged to predict the name of the non-coding regions and then to suggest a function for these introns. At this point, the students will complete a task that acts as a prior knowledge check where they have to identify the 6 errors in the descriptive passage about the lac operon and its role in the regulation of gene expression in prokaryotes. Moving forwards, pre-mRNA as a primary transcript is introduced and students will learn that this isn’t the mature strand that moves off to the ribosome for translation. Instead, a process called splicing takes place where the introns are removed and the remaining exons are joined together. Another quick quiz round leads to an answer of 20000 and students will learn that this is the number of protein-coding genes in the human genome. Importantly, the students are then told that the number of proteins that are synthesised is much higher than this value and a class discussion period encourages them to come up with biological suggestions for this discrepancy between the two numbers. The lesson concludes with a series of understanding and application questions where students will learn that alternative splicing enables a gene to produce more than a single protein and that this natural phenomenon greatly increases biodiversity.
Nervous and hormonal control (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Nervous and hormonal control (Edexcel Int. A-level Biology)

(0)
This lesson describes how the nervous system allows effectors to respond to stimuli and also describes hormonal control in animals. The PowerPoint and accompanying resources have been primarily designed to cover points 8.2 & 8.13 of the Edexcel International A-level Biology specification but it can also be used as a revision lesson as there are numerous prior knowledge checks of muscle contraction, protein structure and the control of gene expression. The lesson begins by challenging the students to recall that a control system contains sensory receptors, a coordination centre and effectors. Sensory receptors are covered in detail later in the topic when some key examples are considered as well as those in the retina, but time is taken now to describe how these structures act like transducers, converting one form of energy into electrical energy and the Pacinian corpuscle is used as an example. The students will learn that the communication between the receptors and the coordination centre and the effectors is by cell signalling and that the effectors can be muscles which contract or glands that release chemicals. The next part of the lesson looks at the differing responses from the nervous and hormonal systems and discusses how this can be governed by the need for a rapid response or more of a long term effect. In terms of nervous control, the students are challenged on their recall of the sliding filament theory of muscle contraction as covered in topic 7. Moving forwards, the students will learn that hormones can be either peptide or steroid hormones and their action at a target cell differs based on their form. Students are tested on their knowledge of protein structure by a series of exam-style questions on insulin and glucagon. They are reminded that steroid hormones can pass directly through the cell membrane and their knowledge of the control of gene expression by transcription factors is tested through a task involving oestrogen and the ER receptor. The lesson concludes by reminding students that the control of heart rate, as covered in topic 7, is a coordinated response that involves both nervous and hormonal control.
WJEC GCSE Biology Topic 1.4 REVISION (Circulatory system in humans)
GJHeducationGJHeducation

WJEC GCSE Biology Topic 1.4 REVISION (Circulatory system in humans)

(0)
This revision resource has been designed to include a range of activities such as exam questions, understanding checks and quiz competitions which will motivate the students whilst they assess their understanding of the content found in topic 1.4 (Circulatory system in humans) of the WJEC GCSE Biology specification. The resource includes a detailed and engaging Powerpoint (58 slides) and associated worksheets, some of which have been differentiated to allow all abilities of students to access the work. The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The structure of a phagocyte and a red blood cell The functions of the plasma and the platelets The structure of arteries and veins and how this relates to their function The role of coronary arteries in supplying oxygenated blood to the heart cells The risk factors and treatments for cardiovascular diseases The structure of the heart and the pathway of blood through the double circulatory system