Hero image

GJHeducation's Shop

Average Rating4.50
(based on 910 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1163k+Views

1970k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Potential difference
GJHeducationGJHeducation

Potential difference

(0)
This is a fully-resourced lesson that has been written for GCSE students and focuses on the meaning of the term, potential difference, and guides students through using this factor in calculations. A range of student-led tasks will challenge the students to recognise how a voltmeter needs to be set up to measure the potential difference and then gets them to use the readings to calculate other factors. Their mathematical skills will be tested throughout and students will be asked to analyse their answers and study a series circuit to learn the key rule about potential difference in these types of circuits. Progress checks have been written into the lesson at regular intervals so students are constantly assessing their understanding.
Topic P2:  Electricity (AQA Trilogy GCSE Combined Science)
GJHeducationGJHeducation

Topic P2: Electricity (AQA Trilogy GCSE Combined Science)

11 Resources
This bundle of 11 lessons covers the majority of the content in Topic P2 (Electricity) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include: Circuit diagram symbols Electric charge and current Current, resistance and potential difference Resistors Diodes Series and parallel circuits Electricity in the home Power The National Grid All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P3: Electricity and Magnetism (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P3: Electricity and Magnetism (OCR Gateway A GCSE Combined Science)

9 Resources
This bundle of 9 lessons covers a lot of the key content in Topic P3 (Electricity and magnetism) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Current and charge Potential difference Electrical circuit symbols Resistance and Resistors Circuit devices Series and parallel circuits Circuit calculations Energy and power in circuits All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Electrical circuit symbols
GJHeducationGJHeducation

Electrical circuit symbols

(0)
This is a fun and engaging lesson that uses a range of quick competitions and tasks to ensure that the students recognisethe electrical symbols for the essential components and can describe the functions for each of these. Competitions such as SNAP and SAY WHAT YOU SEE will introduce the students to the components and their symbols. This lesson has been written for GCSE students and looks to build on what they should know from KS3 - however, it could be used with higher ability students at that level.
Topic C3: Atoms, elements and compounds (Cambridge iGCSE Science Double Award)
GJHeducationGJHeducation

Topic C3: Atoms, elements and compounds (Cambridge iGCSE Science Double Award)

13 Resources
This bundle of 13 lessons covers all of the content in Topic C3 (Atoms, elements and compounds) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics covered within these lessons include: Identifying physical and chemical changes Differences between elements, compounds and mixtures Differences between metals and non-metals The terms solvent, solute, solution and concentration The structure of the atom Electronic configurations Isotopes The formation of ions by gain or loss of electrons Simple covalent structures Dot and cross diagrams for covalent structures Allotropes of carbon Giant covalent structures All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
Topic P1: Motion (Cambridge iGCSE Science Double Award)
GJHeducationGJHeducation

Topic P1: Motion (Cambridge iGCSE Science Double Award)

9 Resources
This bundle of 9 lessons covers the majority of the content in Topic P1 (Motion) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include: Define speed and calculate average speed Distinguish between speed and velocity Define and calculate acceleration Plot distance-time graphs and speed-time graphs Calculate acceleration and distance travelled from a speed-time graph Distinguish between mass and weight Recall and use the equation W = mg Describe how forces can affect a body Plot and interpret extension-load graphs Understand Hooke’s Law Friction and air resistance Resultant forces Calculating moments The principle of moments All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
Topic P6.2: Powering Earth (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6.2: Powering Earth (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers most of the content in sub-topic P6.2(Powering Earth) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include: The main energy sources available for use on Earth Patterns and trends in the use of energy resources The use of transformers to increase or decrease potential difference The National grid The differences in function between the live, neutral and earth wires All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P4: Properties of waves, including light and sound (Cambridge iGCSE Science Double Award)
GJHeducationGJHeducation

Topic P4: Properties of waves, including light and sound (Cambridge iGCSE Science Double Award)

7 Resources
This bundle of 8 lessons covers the majority of the content in Topic P4 (Properties of waves, including light and sound) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include: The meaning of speed, frequency, wavelength and amplitude Distinguishing between transverse and longitudinal waves Understanding how waves can undergo reflection and refraction Reflection of light Refraction of light Describe total internal reflection The meaning of the critical angle Thin converging lens The main features of the EM spectrum The properties and uses of the EM waves The properties and uses of sound waves All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
Topic P5.1:  Wave behaviour (OCR Gateway A GCSE Physics)
GJHeducationGJHeducation

Topic P5.1: Wave behaviour (OCR Gateway A GCSE Physics)

4 Resources
This bundle of 4 lessons covers the majority of the content in sub-topic P5.1 (Wave behaviour) of the OCR Gateway A GCSE Physics specification. The topics and specification points covered within these lessons include: Waves and their properties Wave velocity Sound properties and uses All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Reaction time
GJHeducationGJHeducation

Reaction time

(0)
This is a detailed lesson which looks at the topic of reaction times and guides students through calculating a reaction time using the results of the well known ruler-drop test. In addition, students will see how reaction times can be applied in athletics but also in the calculation of the thinking distance for drivers. The lesson includes an engaging lesson presentation (32 slides) and a student task worksheet. The lesson begins by introducing the key term, reaction time, and teaching students that the average reaction time is 0.2 seconds. Moving forwards, a step by step guide is used to show the students how to take the value for distance travelled by a ruler in the drop test and use the equations of motion and change in velocity equation to calculate the reaction time. There is a large mathematical element to the lesson which challenges the students ability to rearrange formula, convert between units and leave answers to a specified number of significant figures. The answers and methods in obtaining these are always displayed at the end of each task so that the students can assess their understanding and recognise where errors were made if any were. Students will have to follow the provided method to obtain 5 results in the ruler drop test and ultimately find out their own reaction time. The remainder of the lesson looks at how the thinking distance at different speeds can be calculated. This lesson has been written for GCSE students due to the high maths content but could be used with younger students of high ability.
Properties of waves REVISION (Topic 3 CIE IGCSE Physics)
GJHeducationGJHeducation

Properties of waves REVISION (Topic 3 CIE IGCSE Physics)

(0)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 3 (Properties of waves, including light and sound) of the Cambridge IGCSE Physics (0625) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: Give the meaning of the terms speed, frequency, wavelength and amplitude Distinguish between longitudinal and transverse waves and be able to give suitable examples of each Recall and use the equation velocity = frequency x wavelength Describe how waves can undergo reflection, refraction and diffraction Describe how wavelength affects diffraction Describe an experimental demonstration of the refraction of light Be able to define refractive index and recall the equation to calculate Give the meaning of the critical angle and recall the equation to calculate Describe total internal reflection and be able to explain the use of optical fibres in medicine The electromagnetic spectrum Describe the longitudinal nature of sound waves State the approximate range of audible frequencies for a healthy human Show an understanding of the term ultrasound Describe an experiment to determine the speed of sound in air The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Should you WAVE goodbye” where they have to decide if a passage is 100% factually correct or not whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
Pearson Edexcel IGCSE Physics WAVES REVISION (Topic 3)
GJHeducationGJHeducation

Pearson Edexcel IGCSE Physics WAVES REVISION (Topic 3)

(0)
This is a detailed and engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 3 (Waves) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Use the following units: degree (°), hertz (Hz), metre (m), metre/second (m/s) and second (s) Explain the difference between longitudinal and transverse waves Know the definitions of amplitude, frequency, wavelength and period of a wave Know and use the relationship between the speed, frequency and wavelength of a wave Use the relationship between frequency and time period Explain that all waves can be reflected and refracted Know that light is part of a continuous electromagnetic spectrum that includes radio, microwave, infrared, visible, ultraviolet, x-ray and gamma ray radiations and that all these waves travel at the same speed in free space Know the order of the electromagnetic spectrum in terms of decreasing wavelength and increasing frequency, including the colours of the visible spectrum Explain some of the uses of electromagnetic radiations Draw ray diagrams to illustrate refraction Know and use the relationship between refractive index, angle of incidence and angle of refraction Describe the role of total internal reflection in transmitting information along optical fibres and in prisms Explain the meaning of critical angle c Know and use the relationship between critical angle and refractive index Know that sound waves are longitudinal waves which can be reflected and refracted Know that the frequency range for human hearing is 20–20 000 Hz Understand how the loudness of a sound relates to the amplitude of vibration of the source The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Should you WAVE goodbye” where they have to decide whether a passage about a sub-topic of waves is completely correct whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
Energy resources and energy transfers REVISION (Edexcel IGCSE Physics Topic 4)
GJHeducationGJHeducation

Energy resources and energy transfers REVISION (Edexcel IGCSE Physics Topic 4)

(0)
This fully-resourced REVISION lesson is detailed and engaging and uses a range of exam questions, understanding checks, quick tasks and quiz competitions to allow students to assess their understanding of the content within topic 7 (Radioactivity and particles) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Describe energy transfers involving energy stores Use the principle of conservation of energy Know and use the relationship between efficiency, useful energy output and total energy output Describe how thermal energy transfer may take place by conduction, convection and radiation Explain ways of reducing unwanted energy transfer, such as insulation Know and use the relationship between work done, force and distance moved in the direction of the force Know and use the relationship between gravitational potential energy, mass, gravitational field strength and height Know and use the relationship between kinetic energy, mass and speed Understand how conservation of energy produces a link between gravitational potential energy, kinetic energy and work Use the relationship between power, work done (energy transferred) and time taken Describe the energy transfers involved in generating electricity using water, wind, geothermal resources, solar, fossil fuels and nuclear power The students will thoroughly enjoy the range of activities, which include quiz competitions such as “The TRANSFER MARKET” where they have to compete to be the 1st to identify the type of energy transfer shown whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
Edexcel GCSE Combined Science Paper 5 (Physics 1) REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Combined Science Paper 5 (Physics 1) REVISION LESSONS

5 Resources
This bundle of 5 REVISION lessons covers the content in the following topics that can be assessed on Paper 5 (Physics 1) of the Edexcel GCSE Combined Science course: Topic 1: Key concepts in Physics Topic 2: Motion and forces Topic 3: Conservation of energy Topic 4: Waves Topic 5: Light and the EM spectrum Topic 6: Radioactivity Each of the lessons have been designed to include a wide range of activities that will keep the students engaged whilst they assess their knowledge of each of these topics.
Converting units (Maths in Science)
GJHeducationGJHeducation

Converting units (Maths in Science)

(0)
A fully resourced lesson which includes an informative lesson presentation (34 slides) and differentiated worksheets that show students how to convert between units so they are confident to carry out these conversions when required in Science questions. The conversions which are regularly seen at GCSE are covered as well as some more obscure ones which students have to be aware of. A number of quiz competitions are used throughout the lesson to maintain motivation and to allow the students to check their progress in an engaging way This lesson has been designed for GCSE students but is suitable for KS3
Electric current
GJHeducationGJHeducation

Electric current

(0)
An engaging lesson presentation (30 slides) that looks at electric current and ensures that students know the key details about this factor in preparation for their GCSE studies. The lesson begins by forming a definition for this electrical term and then as the lesson progresses, this definition is broken so that each element is understood. Students will be introduced to the difference between electron flow and conventional current. Time is taken to ensure that students understand that an ammeter must be set up in series. The remainder of the lesson will focus on the mathematical calculations which include current and important skills such as converting between units is covered.] As stated above, this lesson has been designed primarily for those students taking their GCSE exams (14 - 16 year olds in the UK) but is suitable for younger students too.
Stopping distances
GJHeducationGJHeducation

Stopping distances

(0)
A fully-resourced lesson that looks at the meaning of thinking, braking and stopping distances and focuses on the factors that would cause each of them to increase. The lesson includes an engaging lesson presentation (45 slides) and an associated worksheet for the calculations. The lesson begins by introducing the term stopping distance and then challenging students to recognise that both the distance travelled during the driver’s reaction time and under the braking force will contribute to this. Students are constantly challenged to think about the factors that would cause either the thinking or braking distance to increase and to be able to explain why scientifically. Moving forwards, the mathematical element that is associated with this topic is explored as students are shown how to calculate the braking distance at different speeds as well as convert between speeds in miles per hour and metres per second. There is also a set homework included as part of the lesson. There are regular progress checks written into the lesson so that students can assess their understanding. This lesson has been written for GCSE students but could be used with those at KS3.
Speed and Velocity
GJHeducationGJHeducation

Speed and Velocity

(0)
A fully-resourced lesson which looks at speed and velocity as scalar and vector quantities and then guides students through a range of questions which challenge them to calculate both of these forms of motion. The lesson includes an engaging lesson presentation (44 slides) and differentiated worksheets containing questions. The lesson begins by introducing the terms magnitude and direction so that students can learn how scalar and vector quantities differ. Students will learn that speed is a scalar quantity and velocity is a vector quantity and then be questioned through a crossroads scenario to understand how speed can stay the same but as soon as an object changes direction, the velocity changes. Moving forwards, the students are given the equation to calculate speed and a few simple questions are worked through before they have to do a series of their own questions to find the average speeds for walking, running and cycling. A pair of more difficult speed questions are then attempted which challenge the students to convert from metres per seconds to miles per hour and to calculate the speed of a bicycle by calculating the distance travelled by the sensor on the wheel. This task is differentiated so that students who need some assistance will still be able to access the work. A quiz competition is then used to introduce students to the range of equations which contain velocity and then having been given them, they have to rearrange the formula to make velocity the subject and apply to some further questions. The final task of the lesson brings all the work together in one final competition where students have to use their new-found knowledge of speed and velocity to get TEAM POINTS. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and any misconceptions to be addressed immediately. This lesson has been written for GCSE students and links between the other topics on the curriculum but could be used with KS3 students who are finding the topic of speed too simple and are needing a challenge
Alpha, beta and gamma radiation
GJHeducationGJHeducation

Alpha, beta and gamma radiation

(0)
An informative lesson presentation (37 slides) and associated question worksheet which looks at the key properties of alpha, beta and gamma radiation. Students are given key pieces of information during the lesson and are then challenged to use their knowledge of related topics such as atomic structure and waves to complete the information table about the types of radiation. By the end of the lesson, students will be able to compare the types of radiation on form, charge, relative mass, penetrating power and equation symbols. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK).
Equations of motion
GJHeducationGJHeducation

Equations of motion

(0)
A concise lesson presentation (22 slides) and question worksheet, which together focus on the challenge of applying the equations of motion to calculation questions. Students are given this equation on the data sheet in the exam - therefore, this lesson shows them how they will be expected to rearrange in it four ways. For this reason, the start of the lesson revisits the skills involved in rearranging the formula, beginning with simple tasks and building up to those that involve indices as are found in this equation. Once students have practised these skills, they are challenged to answer 4 questions, although 1 is done together with the class to visualise how to set out the working. This lesson has been designed for GCSE students