Hero image

GJHeducation's Shop

Average Rating4.51
(based on 926 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1311k+Views

2117k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Random and systematic errors REVISION (AQA GCSE)
GJHeducationGJHeducation

Random and systematic errors REVISION (AQA GCSE)

(0)
This lesson revisits the topic of random and systematic errors and also challenges students on other scientific skills such as identifying variables. Students tend to find this topic confusing, so the PowerPoint and accompanying resources have been designed to support them to identify whether an error is random or systematic and then to understand what to do next. The lesson guides the students through a series of real life examples and shows them how to spot each type of error. There is a considerable mathematical element to this lesson, including the calculation of means or missing values in a table. The lesson concludes with a series of exam-style questions where the students have to apply their understanding of identifying errors, variables and calculating means.
Succession (AQA A-level biology)
GJHeducationGJHeducation

Succession (AQA A-level biology)

(0)
This lesson describes succession as the gradual, progressive changes that occur in a community over time. The PowerPoint and accompanying resources are part of lesson 3 in a series of 4 lessons which have been planned to cover the content included in topic 7.4 of the AQA A-level biology specification. In line with the specification, the lesson describes primary succession and explains how the community changes from the initial colonisation by the pioneer species to the establishment of a climax community. Time is taken to focus on the lichen as a pioneer species and to explain how their actions lead to the production of soil and the subsequent colonisation by more hardy species. The island of Surtsey is used as a real-world example to deepen student understanding. Understanding checks and prior knowledge checks are embedded throughout the lesson (along with the answers) so students can assess their progress on the current topic and also test their ability to link to previously covered topics. Due to the high mathematical content of the AQA assessments, a maths in a biology context question has also been included.
Paper 2 REVISION (AQA A-level biology)
GJHeducationGJHeducation

Paper 2 REVISION (AQA A-level biology)

(0)
This extensive revision lesson challenges students on their knowledge and understanding of the content of topics 5 - 8 of the AQA A-level specification. The PowerPoint and accompanying resources are detailed and engaging and contain a selection of tasks which challenge the following points: Directional, stabilising and disruptive selection Saltatory conduction and other factors affecting conductance speed The structure of a motor neurone Sensory receptors, depolarisation and initiation of an action potential Hardy-Weinberg principle Genetic terminology Codominance and sex-linkage Autosomal linkage Chi-squared test Phosphorylation The stages of aerobic respiration Explaining lower ATP yields in anaerobic respiration Skeletal muscle contraction Structure and function of slow and fast twitch muscle fibres The control of heart rate Electrophoresis and genetic fingerprinting The secondary messenger model The students are tested through a variety of tasks including exam questions, understanding checks, and quiz rounds to maintain engagement. Due to the mathematical content in all A-level exams, there is also a focus on these skills. The answers to all questions are embedded into the PowerPoint so students can use this resource outside of the classroom. The delivery of the whole lesson will likely need at least 2 or 3 hours of contact time so this resource could be used with students in the final weeks building up to their paper 2 exam, or alternatively with students before their mocks on these topics.
Species, populations, gene pool & allele frequency (AQA A-level biology)
GJHeducationGJHeducation

Species, populations, gene pool & allele frequency (AQA A-level biology)

(0)
This lesson describes the biological meaning of species, populations, gene pool and allele frequency and explains how these terms are linked. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 2 lessons that cover the detail of specification point 7.2 (Populations) of the AQA A-level biology. The two living species of the African elephant, the forest and bush elephant, are used as examples to demonstrate the meaning of species and to show how they exist as one or more populations. A quick quiz introduces the term gene pool in an engaging way and then the allele frequency of three versions of the GBA gene demonstrates how these frequencies can change in small populations. In doing so, students are briefly introduced to genetic drift which they will encounter in an upcoming topic. The students are challenged throughout the lesson with understanding checks and prior knowledge checks as well as exam-based questions where they have to comment on the validity of a scientist’s conclusion. The other lesson in topic 7.2 is the Hardy-Weinberg principle.
OCR A-Level Biology Module 3.1.3 (Transport in Plants) REVISION
GJHeducationGJHeducation

OCR A-Level Biology Module 3.1.3 (Transport in Plants) REVISION

(0)
A fun and engaging lesson presentation (90 slides) and associated worksheets that uses exam questions, quick tasks and quiz competitions to allow students to assess their understanding of the topic of transport in plants, which is module 3.1.3 on the OCR A-Level Biology A specification. Competition rounds include “Keyword BINGO”, “Crack the Code” and “Make the Link” and students will enjoy being able to identify areas that require further attention. All exam questions have mark schemes. This lesson is designed for A-level students
OCR Gateway A GCSE Combined Science REVISION:  Units B1 - 3
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science REVISION: Units B1 - 3

(0)
A fun and highly engaging lesson presentation (37 slides) and associated worksheets that combines exam questions and progress checks along with competition rounds to enable students to assess their understanding of the specification content within units B1 - 3 of the OCR Gateway A 9 - 1 GCSE Science. All of the exam questions and progress checks have displayed answers as well as sections where content is recapped so that students can understand how an answer was obtained. The revision rounds in the competition include “Blockbusters”, “Doctor, Doctor” and “Crack the CODE”. This lesson has been designed for GCSE students.
Competition and Interdependence
GJHeducationGJHeducation

Competition and Interdependence

(0)
A detailed and engaging lesson presentation (52 slides) and accompanying worksheet that looks at competition between organisms and the different types of relationships that exist as a result of this interaction. The lesson begins by looking at the meaning of the biological term, "competition", and then introduces this when it occurs between the same species and different species. Students are challenged to consider the different resources that animals compete for before an activity based competition is used to get them to recognise how this competition can cause changes to the population size. Moving forwards, students will meet the three main types of ecological relationship and look at them in greater detail, with predation being a main focus. There are regular progress checks throughout the lesson (with displayed answers) so that students can assess their understanding. This lesson has been designed for GCSE students but can be used with more-able KS3 students who are looking at ecosystems and the relationships that exist within them
AQA GCSE Combined Science Unit P4 (Atomic Structure) REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science Unit P4 (Atomic Structure) REVISION

(0)
An engaging lesson presentation (48 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P4 (Atomic structure) of the AQA GCSE Combined Science specification (specification point P6.4). The topics that are tested within the lesson include: The structure of an atom Isotopes Radioactive decay and nuclear radiation Nuclear equations Half-lives Students will be engaged through the numerous activities including quiz rounds like “It’s as easy as ABG” and “ALPHA or BETA” whilst crucially being able to recognise those areas which need further attention
OCR Gateway GCSE Science C1 REVISION (Particles)
GJHeducationGJHeducation

OCR Gateway GCSE Science C1 REVISION (Particles)

(0)
An engaging lesson presentation (48 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C1 (Particles) of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Introducing particles Chemical and physical changes Atomic structure Isotopes Developing the atomic model Students will be engaged through the numerous activities including quiz rounds like “SPOT the SCIENTIST” and “Order, Order” whilst crucially being able to recognise those areas which need further attention
AQA GCSE Combined Science Unit P6 (Waves) REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science Unit P6 (Waves) REVISION

(0)
An engaging lesson presentation (45 slides) that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P6 (Waves) of the AQA GCSE Combined Science specification (specification point P6.6). The topics that are tested within the lesson include: Longitudinal and transverse waves Properties of waves Types of EM waves Properties and applications of EM waves Students will be engaged through the numerous activities including quiz rounds like “Tell EM the word” and “Take the HOTSEAT” whilst crucially being able to recognise those areas which need further attention
Standard Form (Maths in Science)
GJHeducationGJHeducation

Standard Form (Maths in Science)

(0)
An informative lesson presentation (26 slides) that shows students how to convert between numbers and standard form (and the other way) so they are able to understand when these are used in Science questions. The lesson begins by guiding them through how to change numbers to standard form and explains when a power of 10 that is positive will be achieved and when it will be negative. Students are given the opportunity to see these used in a Science question and there is a cross-subject link as they are also required to convert between units. A number of competitions are used near the end of the lesson to maintain motivation and to allow the students to check their progress in a fun way This lesson has been designed for GCSE students but is suitable for KS3
Drawing graphs (Scientific skills)
GJHeducationGJHeducation

Drawing graphs (Scientific skills)

(0)
This engaging and detailed lesson presentation (43 slides) uses a step by step guide to take students through the important scientific skill of drawing graphs to represent data and address all the misconceptions and misunderstandings that often accompany this topic. The lesson begins by explaining to the students how to decide whether data should be represented on a line graph or a bar chart and a competition called "To BAR or not to BAR" is used to allow them to check their understanding while maintaining motivation. Moving forwards, students are shown a 6 step guide to drawing a line graph. Included along the way are graphs that are wrong and explanations as to why so that students can see what to avoid. There are continuous progress checks and a homework is also included as part of the lesson. This lesson is written for students of all ages who are studying Science.
Rearranging the formula (Maths in Science)
GJHeducationGJHeducation

Rearranging the formula (Maths in Science)

(0)
An informative lesson presentation (37 slides) and accompanying worksheets that guides students through the different methods that can be used to rearrange formulae as they will be required to do in the Science exams. The lessons shows them how to use traditional Maths methods involving inverse operations and also equation triangles to come to the same result. These are constantly linked to actual examples and questions to show them how this has to be applied. There are regular progress checks, with explained answers, so that students can assess their understanding.
Double, closed circulatory system (OCR A-level Biology)
GJHeducationGJHeducation

Double, closed circulatory system (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the type of circulatory system found in a mammal (double, closed) and considers how the pulmonary circulation differs from the systemic circulation. The engaging PowerPoint and accompanying resources have been designed to cover point 3.1.2 (b) of the OCR A-level Biology A specification The lesson begins with a focus on the meaning of a double circulatory system and checks that students are clear in the understanding that the blood passes through the heart twice per cycle of the body. Beginning with the pulmonary circulation, students will recall that the pulmonary artery carries the blood from the right ventricle to the lungs. An opportunity is taken at this point to check on their knowledge of inhalation and the respiratory system as well as the gas exchange between the alveoli and the capillary bed. A quick quiz is used to introduce arterioles and students will learn that these blood vessels play a crucial role in the changes in blood pressure that prevent the capillaries from damage. When looking at the systemic circulation, time is taken to look at the coronary arteries and renal artery as students have to be aware of these vessels in addition to the ones associated with the heart. In the final part of the lesson, students are challenged to explain how the structure of the heart generates a higher pressure in the systemic circulation and then to explain why the differing pressures are necessary. This lesson has been written to tie in with the other uploaded lessons from topic 3.1.2 (transport in animals)
Principles of DNA sequencing (OCR A-level Biology)
GJHeducationGJHeducation

Principles of DNA sequencing (OCR A-level Biology)

(0)
This detailed lesson describes the principles of DNA sequencing and has been designed to cover the first part of point 6.1.3 (a) of the OCR A-level Biology A specification. Fred Sanger’s chain termination method is used as the example to guide the students through the details of each step. The lesson begins with a focus on the common ingredients of the process such as DNA polymerase, DNA nucleotides and primers. Links are made to module 2.1.3 where nucleic acids were initially met through a series of prior knowledge check questions. Time is then taken to explain why these short lengths of synthesised nucleotides are necessary and this will support students when primers are met in the PCR and genetic engineering. Moving forwards, students will recognise how the modification to the nucleotide means that the chain terminates once a modified nucleotide is added into the sequence and that these have been radioactively labelled. Gel electrophoresis is introduced and an outline of the process given to provide knowledge to build on when this is encountered later in the module. A series of exam-style questions allow students to assess their understanding of this potentially difficult topic before students are encouraged to consider the limitations of the method so they are prepared to meet the new methods in upcoming lessons. A number of quiz competitions run throughout the lesson to maintain engagement and to introduce terms and values in a memorable way
Pyrosequencing
GJHeducationGJHeducation

Pyrosequencing

(0)
A detailed lesson presentation (37 slides) and associated worksheets that guide students through the DNA sequencing method called pyrosequencing. The lesson focusses on the numerous enzymes and substrates which are involved in the cascade of events which eventually leads to the production of light when the conversion from luciferin to oxyluciferin occurs. A step by step guide is used to show the students how these events occur and the different outcomes are explored. There are regular progress checks throughout the lesson so that students can assess their understanding of this topic and the links to similar topics. This lesson has been designed for A-level students and above
OCR A-level Biology Module 2 (Foundations in Biology) REVISION
GJHeducationGJHeducation

OCR A-level Biology Module 2 (Foundations in Biology) REVISION

(0)
A detailed and engaging lesson presentation (74 slides) which consists of a series of exam questions, quick tasks and competitions to enable the students to assess their understanding of the topics found within Module 2. All of the exam questions have displayed mark schemes with explanations so that students can recognise errors and misconceptions and address them. Students will thoroughly enjoy the numerous competitions which include "Name the 007 bonds" and "Biology catchphrase".
OCR Gateway A GCSE Combined Science B2 (Scaling Up) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science B2 (Scaling Up) REVISION

(0)
This engaging lesson presentation (52 slides) and associated worksheets uses exam questions with displayed mark schemes, quick tasks and quiz competitions to enable students to assess their understanding of the topics found within module B2 of the OCR Gateway A Combined Science specification. The topics which are specifically tested within the lesson include: Diffusion, Osmosis, Active transport, Exchange and transport, Circulatory system, Heart and blood, Plant transport systems, Students will enjoy the competitions such as "Where's Lenny?" and "Take the Hotseat" whilst being able to recognise those areas which need their further attention.
Chromosome mutations (AQA A-level Biology)
GJHeducationGJHeducation

Chromosome mutations (AQA A-level Biology)

(0)
This fully-resourced lesson explores the contributions of the chromosome mutations that arise during meiosis to genetic variation. The engaging PowerPoint and accompanying worksheets have been designed and written to cover the part of point 4.3 of the AQA A-level Biology specification which states that students should be able to describe how mutations in the numbers of chromosomes can arise spontaneously and significantly contribute to evolution. Over the course of the lesson, students will encounter a number of chromosome mutations but the main focus is chromosome non-disjunction and they will learn that this can result in Down, Turner’s and Klinefelter’s syndromes. Students are guided through a description of the formation of gametes and zygotes with abnormal numbers of chromosomes before being challenged to describe the formation of a zygote with Turner’s syndrome. The key aspects of meiosis, which are taught in a future lesson, are introduced and related to the lead up to the change in chromosome number. Inversion, translocation, duplication and deletion are also introduced and links are made to other topics such as regulatory sequences and gene expression.
Meiosis (AQA A-level Biology)
GJHeducationGJHeducation

Meiosis (AQA A-level Biology)

(0)
This fully-resourced lesson focuses on the events of meiosis which specifically contribute to genetic variation. The detailed PowerPoint and accompanying resources have been designed to cover the 4th and final part of point 4.3 of the AQA A-level Biology specification which states that students should be able to describe how meiosis produces daughter cells that are genetically different from each other. In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations. Due to the detail of this lesson, it is estimated that this will take about 2 hours of A-level teaching time to deliver