Hero image

GJHeducation's Shop

Average Rating4.50
(based on 923 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1287k+Views

2088k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Organ transplants
GJHeducationGJHeducation

Organ transplants

(0)
An engaging and informative lesson presentation (40 slides) that looks at the different steps that have to be taken when trying to identify potential donors for organ transplants. Links are made throughout the lesson to related topics such as the human defence systems and blood groups. The lesson begins by challenging the students to use their knowledge of the body’s defences to explain why closely matching tissues is critical when choosing a donor. Moving forwards, students will see how the four blood groups in the ABO system need to receive certain bloods and can only be given to certain others. There is a brief discussion of the HLA antigens and why this needs to be matched. The remainder of the lesson focuses on immuno-suppressant drugs and the advantages and disadvantages to individuals of taking these drugs. Progress checks have been written into the lesson at regular intervals to allow the students to constantly assess their understanding and any misconceptions to be addressed. This lesson has been written for GCSE students
Neutralisation reactions
GJHeducationGJHeducation

Neutralisation reactions

(0)
A lesson presentation (44 slides), accompanied by a question worksheet, which together looks at the reactants and products of a neutralisation reaction and challenges students to represent these reactions with equations. The lesson begins with a bit of fun as students are asked to read through a scene from the US comedy show and spot that a neutralisation reaction is hidden under the jokes. Students will use their KS3 knowledge to recall that these reactions involve acids and alkalis and moving forwards they will be introduced to a new term, base. The rest of the lesson focuses on writing word and balanced symbol equations for different neutralisation reactions. A step by step guide is used to demonstrate how to work out the name of the salt as well as writing accurate chemical formulae. Finally, students are challenged to apply their new-found knowledge and complete equations for 4 neutralisation reactions and they can assess against the displayed mark schemes. Progress checks have been written into the lesson at regular intervals so that this self-assessment is constant and any misconceptions are quickly addressed. This lesson has been written for GCSE students but could be used with younger students who are looking to extend their knowledge
KINETIC ENERGY
GJHeducationGJHeducation

KINETIC ENERGY

(0)
A fully-resourced lesson which focuses on using the kinetic energy equation to calculate energy, mass and speed. The lesson includes a lesson presentation (23 slides) which guides students through the range of calculations and accompanying worksheets which are differentiated. The lesson begins with the students being drip fed the equation so they are clear on the different factors involved. They are challenged to predict whether increasing the mass or increasing the speed will have a greater effect on the kinetic energy before testing their mathematical skills to get results to support their prediction. Moving forwards, students are shown how to rearrange the equation to make the mass the subject of the formula so they can use their skills when asked to calculate the speed. The final task of the lesson brings all of the learning together to tackle a set of questions of increasing difficulty. These questions have been differentiated so that students who need extra assistance can still access the learning. This lesson has been written for GCSE students
Weight and gravitational field strength
GJHeducationGJHeducation

Weight and gravitational field strength

(0)
A fast-paced lesson that looks at weight and how this differs on different planets depending upon the gravitational field strength. At the start of the lesson, the students are shown the equation to calculate gravity force and weight and are challenged to spot a difference (if there is one)! Time is then taken to explain how weight is the term used when a mass comes into the gravitational field of the Earth (or other planets). A quick understanding check, with the gravitational field strength Olympics, is used to see whether students can calculate this field and their mathematical skills are tested with a number of conversions needed to do so. Moving forwards, students are shown a number of masses and weights on the Earth and the Moon so they can see how mass does not change but weight will be different. The final task challenges them to apply their new-found knowledge to calculate their mass on the Earth, the Moon and Jupiter. This lesson has been designed for GCSE students but it is suitable for KS3 students who are exploring the Universe topic.
Terminal velocity
GJHeducationGJHeducation

Terminal velocity

(0)
A fast-paced lesson where the main focus is the description of motion with reference to the forces involved. The lesson begins by introducing the term, terminal velocity, and then through consideration of examples in the English language, students will understand that this is the top velocity. The example of a skydiver is used and whilst the story of the dive is told, students are challenged to draw a sketch graph to show the different stages of this journey. An exemplary answer is used to visualise how the motion should be described. Related topics like free body diagrams and resultant forces are brought into the answer in an attempt to demonstrate how they are all interlinked. The next task asks the students to try to describe the remaining parts of the graph and they can assess against displayed mark schemes. The final part of the lesson looks at the two terminal velocities that they were during the skydive and explains that the increased surface area after the parachute was opened led to the second velocity being lower. The last task challenges the students to use this knowledge to answer a difficult exam question. It has been differentiated so those students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Energy sources
GJHeducationGJHeducation

Energy sources

(0)
This lesson has been designed to explore the range of energy sources which are used on Earth and specifically looks at why an increase in the use of renewable sources is critical for the future. The student’s scientific understanding is challenged at each step of the lesson but there is also a mathematical element running throughout. The lesson begins by challenging the students to predict which energy sources contributed the greatest % when presented with a pie chart. Students cover this topic in other subjects like Geography, so the lesson aims to build on this and consolidate the essential understanding. A range of renewable sources are discussed and key terms such as carbon-neutral taken on further. This lesson has been designed for GCSE students but parts could be used with younger students who are looking at
Thermistors and LDRs
GJHeducationGJHeducation

Thermistors and LDRs

(0)
This lesson has been designed to help students to explain the relationship between current and resistance in thermistors and LDRs. This can be a topic which students do not engage with or understand well, so this lesson has tried to add engagement with useful tips to deepen their knowledge. A number of quick competitions are used to introduce key terms such as semiconductor and then the key points explained. Students are given an exemplary answer for the thermistor so they can see how their work should be set out when trying to explain the graph produced by a LDR. Progress checks have been written into the lesson at regular intervals so that students can assess their understanding and any misconceptions can be addressed. This lesson has been designed for GCSE students.
Meiosis
GJHeducationGJHeducation

Meiosis

(0)
A fully-resourced lesson, which has been designed for GCSE students, and includes an engaging and informative lesson presentation (37 slides) and differentiated worksheets. This lesson explores the type of cell division known as meiosis and focuses on the use of key terminology so that students can apply their knowledge to any organism that carries out this division, and not just humans. For this reason, time is taken at the start of the lesson to go over the meaning of the terms, diploid and haploid. Students are also taught how to think about the quantity of DNA inside a cell in terms of n, so that they can see and understand how this quantity changes through the cell cycle. They are encouraged to fill in a table at each stage of the cycle to show the quantity of DNA. In this way, students will understand how a diploid parent cell goes through interphase and as a result of DNA replication, the quantity of DNA is 4n as the first meiosis division is about to start. Although this could be viewed as high end knowledge, the format of this lesson should allow all abilities to understand and therefore have more chance of being successful with meiosis questions. Students are encouraged to think for themselves to work out how many daughter cells will result at the end of two divisions and to consider the quantity of DNA found inside those cells. At this stage of the lesson, students have to summarise all they have learnt into two key points (as shown on the cover image). The remainder of the lesson gives them the opportunity to apply their knowledge with a range of questions and it is not until right at the end that they are allowed to finally relate this cell division to humans. Although this lesson has been primarily designed for GCSE students (14 - 16 year olds in the UK), it is highly suitable for A-level lessons, especially if a teacher wants to recap on this cell division before extending knowledge.
Health and disease
GJHeducationGJHeducation

Health and disease

(0)
A fast-paced lesson that explores the meaning of “health” and introduces the idea of communicable and non-communicable diseases. The lesson begins by showing the students an example of a health survey so they can complete a definition of the meaning of this term. Despite being widely used in the English language, the actual Scientific definition is not always well known by students so this 1st task is an important one. Moving forwards, students are given 5 minutes to see if they can fill an A-Z with the names of different diseases. Students will learn that diseases can be grouped as communicable or non-communicable and will be encouraged to discuss what the determining factor is on this classification. A quiz competition called “TO COM or NOT TO COM” is a play on words of Shakespeare’s famous saying but acts to test whether the students can distinguish a number of diseases as being spread by pathogens or not. After each disease is revealed, time is taken to look at the details of some of them like cystic fibrosis and the zika virus. The lesson concludes with the example of the human-papilloma virus and the connection between this and cervical cancer so that students can recognise that sometimes both types of disease are involved. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but could be used with younger students who are looking at the healthy living topic.
Mitosis
GJHeducationGJHeducation

Mitosis

(0)
A detailed lesson which looks at the type of cell division known as mitosis and aims to ensure that students understand that it leads to the production of genetically identical daughter cells. In order to understand this type of cell division and any related topic such as meiosis, students have to be confident with the use of terms like diploid. In addition to this, time is taken to introduce them to a way of considering the quantity of DNA within a cell in terms of n. If they are able to use this correctly, then no matter the organism which is involved in a mitosis exam question, they will be able to answer successfully. Discussion points and progress checks are written into the lesson at regular intervals so their understanding can be assessed. The last part of the lesson provides the students with an opportunity to apply their knowledge of mitosis to a range of exam questions and they can assess against the displayed mark schemes. This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is also appropriate for older students who want to recap on the key details of the division before extended knowledge is added.
Specific latent heat
GJHeducationGJHeducation

Specific latent heat

(0)
A fast-paced lesson presentation (20 slides) which focuses on the understanding of the scientific term, specific latent heat, and guides students through use of the related equation in energy calculations. This lesson has been written for GCSE students and along with specific heat capacity, these are topics which students regularly say that they do not understand so the aim here has been to embed the key details. The task at the start of the lesson gets students to plot the changing state line for pure water. They have to annotate the line to show the changes in state and then most crucially recognise that when these changes in state occur, there is no change in temperature. Moving forwards, students will meet the additional terms of fusion and vaporisation and then be introduced to the equation. They are reminded that this isn’t an equation that they have to recall, but are expected to apply it and therefore the next few slides focus on the potential difficulties that could be encountered. These include the conversion between units and a mathematical skills check is included at this point so that their ability to move between grams and kilograms and Joules and kiloJoules is tested. Progress checks like this are written into the lesson at regular intervals so the students can constantly assess their understanding.
The BIG BANG Theory
GJHeducationGJHeducation

The BIG BANG Theory

(0)
A short, concise lesson presentation (25 slides) that explores the key evidence that is used to support the Big Bang Theory. This lesson has been written for GCSE students with the focus on the fine details which they need to be able to understand in order to successfully answer exam questions on this topic. The lesson begins with a fun slide which challenges their mathematical skills to work out a number of years and spot that a dingbat represents the Big Bang. This leads students into the key details of the theory and includes when it was believed to have happened. The rest of the lesson focuses on two main pieces of evidence, namely red shift and CMBR. Students are guided through these topics and related topics such as the Doppler effect are revisited. The final part of the lesson uses a quick competition to get students to recognise the names of alternative theories and a set homework challenges them to add details in terms of evidence to support each of steady state and creationism.
Light and electron MICROSCOPES
GJHeducationGJHeducation

Light and electron MICROSCOPES

(0)
A fully-resourced lesson, designed for GCSE students which includes an engaging and informative lesson presentation (49 slides) and an image, actual and magnification question worksheet. This lesson looks at the key features of light and electron microscopes and guides students through calculating size and magnification. The lesson begins by challenging students to pick out two key terms about microscopes, magnification and resolution, from a group of Scientific words. The understanding of these two terms is critical if students will be able to compare the two types of microscopes so time is taken to go through the definitions and give examples. A number of quick quiz competitions have been written into the lesson to aid the engagement on a topic that some students may not initially consider to be that motivating. These competitions allow key terms such as micrometer and the two types of electron microscope to be introduced in an engaging way. As a result, students will know the numbers that explain why electron microscopes are more advanced than their light counterparts. The remainder of the lesson looks at the units of size which are used in calculation questions and a step by step guide is used to show the students to calculate the actual size of an object or the magnification. Progress checks have been written into this lesson at regular intervals so that students are constantly assessing their understanding.
Topic B4:  Community level systems (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B4: Community level systems (OCR Gateway A GCSE Combined Science)

5 Resources
This bundle of 5 lessons covers the majority of the content in Topic B4 (Community level systems) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Ecosystems Abiotic and biotic factors Ecological relationships The carbon cycle The nitrogen cycle Decay and decomposition All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding. It is estimated that this bundle would cover about 3 week’s worth of lessons.
Topic B3: Organism level systems (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B3: Organism level systems (OCR Gateway A GCSE Combined Science)

10 Resources
This bundle of 11 lessons covers the majority of the content in Topic B3 (Organism level systems) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: The nervous system Hormones and the endocrine system Adrenaline Negative feedback loops Thyroid gland and thyroxine The menstrual cycle Contraception Using hormones to treat infertility Homeostasis Controlling blood glucose Diabetes All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Limiting factors of photosynthesis
GJHeducationGJHeducation

Limiting factors of photosynthesis

(0)
A fully-resourced lesson which has been designed for GCSE students and includes an engaging lesson presentation and associated worksheets. This lesson looks at the three limiting factors of photosynthesis, focusing on the graphs that they produce and ensures that students can explain why temperature is a factor. This lesson begins by introducing the students to the definition of a limiting factor. They are challenged to recognise that it would be photosynthesis which is limited by carbon dioxide concentration and light intensity. The third factor, temperature, is not introduced until later in the lesson so that students are given thinking time to consider what it might be. Having been presented with two sets of data, students are asked to draw sketch graphs to represent the trend. The limiting factors on the light intensity graph are taught to the students so they can use this when working out the limiting factors on the carbon dioxide graph. The remainder of the lesson focuses on temperature and more specifically why a change in this factor would cause a change in the rate of photosynthesis because of enzymes. The student’s knowledge of that topic is tested alongside. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding.
Topic B5: Genes, inheritance and selection (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B5: Genes, inheritance and selection (OCR Gateway A GCSE Combined Science)

10 Resources
This bundle of 10 lessons covers the majority of the content in Topic B5 (Genes, inheritance and selection) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Variation Types of reproduction Meiosis Genetic diagrams Sex determination Classification Evolution by natural selection Evidence for evolution All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding. It is estimated that this bundle would cover about 6 week’s worth of lessons.
Topic C6: Global Challenges (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C6: Global Challenges (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 7 lessons covers some of the content in Topic C6 (Global challenges) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Extracting metals from their ores Extracting metals by electrolysis Biological metal extraction Fractional distillation of crude oil The alkanes Cracking hydrocarbons All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C4: Predicting and identifying reactions and products (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C4: Predicting and identifying reactions and products (OCR Gateway A GCSE Combined Science)

4 Resources
This bundle of 4 lessons covers the majority of the content in Topic C4 (Predicting and identifying reactions and products) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: The alkali metals The halogens Displacement reactions of the halogens The Noble gases Reactivity of metals and the reactivity series All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding. It is estimated that this bundle would cover about 2 week’s worth of lessons.
Topic C3: Chemical reactions (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C3: Chemical reactions (OCR Gateway A GCSE Combined Science)

18 Resources
This bundle of 18 lessons covers all of the content in Topic C3 (Chemical reactions) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Conservation of mass Writing word and symbol equations Writing ionic equations The mole Mole calculations Calculating masses Concentrations Endothermic and exothermic reactions Bond energy calculations Making salts Reactions of acids Oxidation and reduction reactions Electrolysis Writing half equations for electrolysis Detecting gases All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.