Hero image

524Uploads

220k+Views

119k+Downloads

Daylight hours maths activity
IETEducationIETEducation

Daylight hours maths activity

(0)
In this fun maths activity, students will look at the way the length of the day changes over the year. They will use a data sheet to plot a graph, then interpret the data to work out the date of the longest and shortest days of the year in the United Kingdom. A free activity sheet can be downloaded. And please do share your poetry highlights with us @IETeducation! #SantaLovesSTEM
How does a Sat Nav system work?
IETEducationIETEducation

How does a Sat Nav system work?

(1)
Learn about the technology behind satellite navigation systems and discuss the pros and cons of using them Can your students consider how a GPS system functions and discuss the advantages and disadvantages of using them? This activity is suitable for KS3 and KS4 and encourages students to undertake research and produce a visual display. This activity is an engaging investigation into the uses of communication technology in the modern world. This activity is an individual activity and could be run in an ICT suite to allow students to use the internet for research. Distribute the Sat Nav handout to students. This handout gives some outline information about satellites and an un-annotated diagram. Students can cut out or copy the un-annotated diagram and add information to this to produce a visual display of how a Sat Nav system works. There are a series of questions on the Sat Nav handout. Questions 1-4 are designed to get students to undertake research on the topic of satellites and their functionalities and capabilities. This is a simple activity that will take approximately 30 minutes to complete. How does a Sat Nav system work? What we often refer to as ‘Sat Nav’ is properly called the Global Positioning System (GPS). This uses satellites that continually transmit a signal. They are like an accurate orbiting clock. The signal from at least three and up to seven satellites is received and compared by the Sat Nav device. Using some complicated maths, the Sat Nav device can work out not only where it is on the Earth’s surface, but at what altitude it is as well. The position information is compared with a map downloaded and stored by the Sat Nav device. The satellites tell you where you are, and the mapping hardware fills in the pictures of the road around you. The satellites need to have a clear path through the air to the Sat Nav device – this is normally called a clear line of ‘sight’. The engineering context Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives. Download the free How does a Sat Nav system work? activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Exploded views
IETEducationIETEducation

Exploded views

(0)
How to draw an exploded view This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within design and technology and maths. This resource focusses on drawing exploded views of products. Different types of drawing are used to communicate different types of information. Exploded views show how the component parts of a product relate to each other. These are widely used to support the assembly of products, for maintenance activities and when building flat pack furniture at home. Producing an exploded view develops drawing skills, whilst simultaneously allowing concepts such as dimensions, proportion and scale to be introduced in a practical context. In this activity learners will produce an exploded view drawing of a pen, working in proportion and ideally to scale. This could be used as a one-off activity, an extension to maths learning on scale, or linked to D&T activities such as product analysis or section drawing. It could also be used in conjunction with the IET primary poster – Exploded Views. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Reading maps and scale drawings
IETEducationIETEducation

Reading maps and scale drawings

(0)
Work out how to reach destinations using a scale map In our daily life we take 21st-century technology for granted. Some could argue that we aren’t developing basic skills, as technology often does the work for us. When the technology fails, however, the absence of some necessary skills could create difficult situations. Can your students use our worksheet and presentation to work out how to reach a destination from a scale map? This activity is an engaging investigation into the uses of communications technology in the modern world. There is an opportunity to audit the students’ skills such as visualisation or map-reading to form a scale drawing. These are skills that may not have been developed due to the use of various electronic devices. As a visualisation activity, distribute the Lost Now presentation as a handout or display it using a data projector. This is an activity where the process of thinking about what the map might show is more important than the actual outcome of the sketch they would produce. The handout has text handouts that can be printed and given to the students. There is also a map using Ordnance Survey symbols that might be better displayed on a screen using a data projector. Students should complete the three activities outlined in the presentation either in groups or as individuals. Tools/resources required Ruler (a transparent ruler showing millimetres is best) Calculators Students will need Ordnance Survey symbols from the website below (either print sheets of the symbols or display them on a screen to save on copying). The engineering context Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives. Suggested learning outcomes By the end of this activity students will be able to make informed decisions about technology for social, economic and environmental reasons, they will be able to use scale drawing and they will have an understanding of how waves are used to carry a communications signal. Download the free Reading maps and scale drawings activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
CAD design project
IETEducationIETEducation

CAD design project

(0)
Producing a CAD drawing of a design idea This activity involves using CAD to design a modular product that could be made in batches using the casting process. Students will be tasked with creating a mould that could be used to make this product. The aim of this activity is to design a shape that can be tessellated, have a practical application, and would look aesthetically pleasing as a modular set of products that can lock together. This project is part of a series of resources designed to challenge the students by requiring them to apply the knowledge and understanding of engineering materials through a ‘batch’ production experience. This activity should be followed by Investigating batch production . Also included in the series are Engineering design processes and Investigating cast products. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design and technology (D&T). Activity: Producing a CAD drawing of a design idea In this activity students will design a modular product that could be made in batches using the casting process and create a mould that could be used to make this product. Students will be asked to design a set of identical products that interlock (are modular). The products must be suitable for batch production made by casting and be made from PoP (plaster of Paris). They’ll need to produce sketches of some design ideas and then choose one for modelling using CAD software. Students will next create a card model to test the interlocking feature and aesthetics of their design. After this they can make any necessary adjustments to their CAD drawing, and use use CAD/CAM to create an MDF mould. The engineering context Engineers will use CAD design as part of the process of making products. Items that have been designed this way are also ideal for batch production as they can be easily replicated. This links to industrial practices such as quality control, standardisation, and casting manufacture. Suggested learning outcomes This activity will teach students to analyse a design brief as well as generate ideas for a tessellated product that is suitable for batch manufacture. Students will also learn how to produce a CAD drawing of a design idea. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Water wheel construction
IETEducationIETEducation

Water wheel construction

(0)
Calculating the angles and lengths of components in a water wheel In this starter activity students will use a water wheel model to determine various angles and lengths. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and engineering. Activity: Calculating the angles and lengths of components in a water wheel Students will review our presentation, which explains the structure of a water wheel. Students are tasked with calculating the central angle of the water wheeling by diving 360 degrees by the number of equally spaced spokes. Learners must then find the size of a specified angle and two sides of a shape by identifying familiar shapes within our water wheel diagram (e.g., a type of triangle). Students can approach this in more than one way, using either trigonometry or by sketching a scale drawing. After the lesson is complete, there can be a class discussion on the accuracy and usefulness of both methods. Download our activity overview for an introductory lesson plan on calculating angles and lengths in a water wheel for free. The engineering context Mathematical modelling is often used in manufacturing, construction, and civil engineering, where mathematical shapes and principles are used by engineers to inform design specifications, architectural drawings, and design schematics. Suggested learning outcomes In this activity students will learn about the angle properties of a regular polygon and an isosceles triangle. Learners will use the knowledge of trigonometry to find the length of a side and also be able to draw a scale diagram of a triangle for the purposes of construction. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. You can download our classroom lesson plan for free! Please do share your highlights with us @IETeducation
Flowcharts for shapes
IETEducationIETEducation

Flowcharts for shapes

(1)
Create a flowchart which identifies the properties of different shapes Flowcharts show the order in which a series of events is to be carried out. They are used for lots of purposes including; programming microcontrollers with instructions, mapping processes and sorting. Activity info, teachers’ notes and curriculum links An engaging activity in which students will make a flowchart to sort various shapes and ensure that each shape finishes in a unique place at the end of the flowchart. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Mission to Mars - DIY challenge day
IETEducationIETEducation

Mission to Mars - DIY challenge day

(0)
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® DIY Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way. The context of the challenge Humans have been exploring the Earth for many years, travelling abroad for holidays, organising explorations to the top of mountains, to the poles of the Earth and to the bottom of oceans. What happens when this spirit of expedition is turned to the skies? Activity info and teachers’ notes The Mission to Mars challenge is based on the IET Faraday® Challenge Day of the same name from our 2013/14 IET Faraday® Challenge Day season. Students are the engineer specialists recruited by ‘Make it 2 Mars’ to establish a human settlement on the planet Mars by 2023. Students will design and construct a rocket which will transport supplies via Earth orbit to the astronauts on Mars, as well as building a system to transport their rocket to the launch site for testing. Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. What’s included? The complete set of downloadable materials includes: Teachers pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates. Student booklet Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. Introductory PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips. Download the free activity sheet below! All online resources are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. If you are running one of our IET Faraday® DIY Challenge Day please do share your experience with us via our feedback form and case study template here. If you are unfamiliar with how to run a IET Faraday® DIY Challenge Day have a look at our 6 start-up videos here where we take you through the days, how they should run and what they entail. And please do share your classroom learning highlights with us @IETeducation
Market research on colour and mood
IETEducationIETEducation

Market research on colour and mood

(0)
Designing a questionnaire that informs product design Engineers play a key role in our everyday lives, often in ways we may not realise. Take the Watt Nightclub in Rotterdam as an example - engineers have designed a system that turns the energy created by dancing into power for the lighting. Even the colour of the lights was a consideration. In this activity, students will explore the relationship between colour and mood, and how it might impact the amount of electricity generated on a dance floor. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design and technology (DT). Activity: The activity begins with a class discussion on whether colour can scientifically affect mood. Students will then learn about the role of questionnaires in research, including what makes a good questionnaire and what factors need to be considered when designing one. The class will watch the Dance Power film, which directly relates to this technology, and then split into groups to create their own questionnaires. These will be tested, evaluated, and refined before being conducted as homework. Students will process and present their findings, considering the reliability and accuracy of their evidence. They’ll discuss their results and the effectiveness of questionnaires as a research tool. The engineering context Market research is essential for engineers working in product design, providing valuable insights into consumer needs and preferences, enabling them to create innovative products that meet market demand and improve user satisfaction. Furthermore, by exploring how engineers can use colour to influence mood and hence energy production, students will gain an insight into the creativity and problem-solving involved in engineering. Suggested learning outcomes Through this activity, students will gain an understanding of the scientific method, specifically the design and implementation of a market research questionnaire. The class will develop the ability to generate scientific evidence to prove a hypothesis, in this case, the relationship between colour and mood. They will also consider what constitutes sufficient evidence for scientists to confirm a hypothesis. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. Please do share your highlights with us @IETeducation.
Table Tennis Server Challenge
IETEducationIETEducation

Table Tennis Server Challenge

(0)
IET Faraday® DIY Challenge Day This engineering challenge for kids aims to create a device that consistently serves table tennis balls to a player so that they can practice their skills at the table tennis table. By creating this brilliant machine, a player can practice table tennis on their own while the machine serves back to them. Activity introduction The Faraday Challenge ‘Table Tennis Server’ has been designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent). Each team will be asked to assign: a team leader; an accountant; an assessment coordinator; two scientists; two mathematicians; two design and technologists; manufacturers and designers. Each team member will need to be assigned more than one role and feed into different aspects of the day. You can adapt this set of resources for larger numbers of students if, for example, you wish to run the event for the whole year group. If this is the case, you will need to increase the number of team booklets and practical resources appropriately. We have provided a set of printable resources and guidelines notes giving teachers and technicians the basic ingredients to run their very own Faraday Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way. The set of downloadable materials includes: Teachers pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates. Student booklet Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. Introductory PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips. The engineering context Table tennis is a growing sport in the UK. Practice, as with most things, is the key to improving at the sport. The only problem is that it is hard to practice on your own. Being able to return service is often what provides the edge in terms of winning and losing. Within this challenge, students will work in teams to design and make a prototype device that will serve tennis balls consistently across a table tennis table. The server must fit securely on the edge of the table and serve at least four balls accurately and precisely in the same position, and allow the ball to be returned. Download the activity sheets for free! All online resources (including film clips!) are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. For additional related videos, please visit the IET Education website.
Balancing forces to design a boat
IETEducationIETEducation

Balancing forces to design a boat

(0)
Balancing forces to design a boat Using knowledge of forces in an engineering design context The balancing forces to build a boat activity tasks participants to apply scientific and mathematical understanding of forces (resistance, buoyancy and thrust) and Newton’s 3 laws of motion, in an engineering and design context. Relate speed to the streamlining in boat design and the shape of a boat’s hull. Consider the balanced and unbalanced forces the boat needs to withstand for maximum efficiency. This activity will demonstrate the principles of hydrodynamics, a similar set of principles to aerodynamics but involving water. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project. However, it can also be tackled independently from each subject. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Projector/whiteboard The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. Please do share your classroom learning highlights with us @IETeducation
Create Chinese calligraphy
IETEducationIETEducation

Create Chinese calligraphy

(0)
Learning how to write using traditional Chinese handwriting. In this activity learners will use the theme of the Chinese and Lunar New Year to learn about and make use of Chinese calligraphy. They will learn about different types of ‘script’, what is meant by a Xuan, and how to write numbers using Chinese Regular script. There are five major script types used today in China: seal script, clerical script, cursive script, running script and standard script. Regular script means the proper script type of Chinese writing and is used by all Chinese for government documents and printed books. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Pencils Paintbrush Paint Pot of water to clean brush The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
What is energy efficiency?
IETEducationIETEducation

What is energy efficiency?

(0)
Use mathematics to investigate the topical issue of the cost and efficient use of energy This engaging activity for KS3 seeks to teach students how to use mathematics to investigate the topical issue of the cost and efficient use of energy. This is a thought-provoking exercise that will teach students to think about sustainability and develop their understanding of mathematical modelling. In this activity students will investigate the topical issue of the cost and efficient use of energy. Using functional mathematics, they will recognise that published facts and figures are not necessarily accurate and that mathematical insight should be used to probe data. As an optional extension activity, students could quantify how energy is used for heating within a dwelling. The quantification could be in terms of units of energy and/or cost. They could then find comparable data for one or more dwellings of different design, for example of different sizes, of radically different design (e.g. flats vs. detached houses), or dwellings designed to be eco-friendly. They should analyse the differences in energy performance identified. This is a quick and simple activity that will take approximately 15 – 30 minutes to complete. Tools/resources required Projector/Whiteboard The engineering context Energy efficiency refers to the use of less energy to perform a specific task or achieve a particular outcome. In other words, it is the ability to accomplish the same level of output using less energy input. Energy efficiency can be achieved through the use of more efficient technologies, equipment, or processes, as well as through changes in behaviour and practices. It is an important concept in the context of sustainable development, as it helps to reduce energy consumption and greenhouse gas emissions, conserve natural resources, and lower energy costs. Examples of energy-efficient practices include using energy-saving light bulbs, improving building insulation, and upgrading to energy-efficient appliances. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Maths behind a heating system
IETEducationIETEducation

Maths behind a heating system

(0)
This is a practical exercise in which students will utilise their mathematical knowledge to solve problems and apply formulas. Specifically, they will compute the length of pipes necessary for an underfloor heating system. They will also write a brief explanation of how a sustainable underfloor heating system operates. This can be effectively taught within mathematics or within design and technology, as part of resistant materials or product design. How long will this activity take? This activity will take approximately 60-90 minutes to complete Tools/resources required Green School film Projector/Whiteboard Measuring equipment e.g. tape measures or trundle wheels Squared paper The engineering context Sustainability is a key consideration in modern engineering practices. As the world faces pressing environmental challenges such as climate change and resource depletion, engineers must design solutions that not only meet the needs of society, but also minimise their impact on the planet. Sustainable engineering involves developing systems, products and processes that are socially, economically, and environmentally responsible. This can include reducing carbon emissions, optimising energy use, minimising waste, conserving natural resources, and designing products that can be recycled or repurposed at the end of their lifecycle. Suggested learning outcomes By the end of this activity students will be able to describe the operation of a sustainable underfloor heating system and they will be able to create and apply mathematical formulae in a practical context. Download the free Maths Behind a Heating System activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Water supply
IETEducationIETEducation

Water supply

(0)
Organise water filtration components to create a safe water supply system Activity info, teachers’ notes and curriculum links This activity challenges students to work in small teams to design a water supply system for a small town of 5,000 inhabitants. They have to work within a budget, including giving themselves a profit margin. The activity offers strong opportunities for cross-curricular work with Enterprise. The ‘Catalogue of Components’ handout includes a list of possible parts from which students can include in their design of their filtration system. Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Heating effect of infra-red
IETEducationIETEducation

Heating effect of infra-red

(0)
In this activity students will consider the heating effects of infrared energy, and how this is used in a range of products. They will then develop an experiment to measure the heat output from different devices. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science (specifically physics) and design & technology (D&T). Activity: Considering the heating effects of infrared energy and how this is used in a range of products At the start of the activity students will brainstorm different ways energy appears in the home and what colour they associate with heat. In pairs, students will then discuss the ultimate fate of most energy (becoming heat) and why devices like TVs and computers get warm. They’ll view our Cooking Devices presentation to identify the energy used to heat food. They’ll also examine appliances that produce infrared heat before designing an experiment to measure how much heat different devices produce. Results must be recorded using our Results Table worksheet so that they can be analysed in terms of which devices heat most effectively. Students will then be asked a series of questions which reflect on how infrared energy is connected to the temperature changes. Download our activity overview for a detailed lesson plan on infrared energy. The engineering context Understanding the principles of infrared heat can lead engineers to create and improve devices that warm objects directly, unlike convection heating which heats the air around an object. Suggested learning outcomes At the end of this lesson students will know how light and infrared travels as a wave. They’ll also understand the electromagnetic spectrum and its applications., as well as convection and the link between frequency and wavelength. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation below. Please do share your highlights with us @IETeducation
Fitness and gaming
IETEducationIETEducation

Fitness and gaming

(0)
Testing fitness to decide whether people should engage in computer-based sport With such a wide variety of fitness-based computer games available, this engineering activity for kids encourages children to collect data to find out if video games for fitness have the desired effect on fitness levels. Do technology games really enhance fitness? Can you increase your fitness levels by being in front of a gaming computer? Use this activity to help answer these questions while at the same time questioning the validity of data and the difficulties of carrying out a fair test. This lesson involves a series of discussions and ranking activities to develop students understanding of the link between fitness, pulse rate, respiration, and activity. This activity was designed as a science activity but would be an excellent opportunity to be taught in conjunction with PE and mathematics. Students will divide themselves into groups of 4 to 6 and have a discussion to establish what the group understands by the meaning of the word ‘fitness’ and clarify a group definition. Students should consider the following questions: what do we mean by someone’s level of fitness? What is a pulse rate? What is respiration and where does it happen? Why do we need our heart and blood? What is energy and how does it relate to activity? What you will need Projector Whiteboard The engineering context The ‘Who’s the winner’ scheme of work provides students with an opportunity to collect data which they can use as evidence to debate whether people should be encouraged to engage in computer-based sports activities. The investigation highlights how difficult it is to control all variables and therefore carry out a fair test. The students’ evaluation of the investigation will allow them the chance to question the validity of the data, question the size of the data set used and question the time span data needs to be collected over before it can be used to confirm a claim. Suggested learning outcomes By the end of this engaging activity students will be able to explain what is meant by fitness, pulse rate and respiration and how they are affected by activity. They will also be able to explain how fitness relates to level of activity. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. You can stream and download the related films for free by clicking on the appropriate link in the related resources section below. Please share your classroom learning highlights with us @IETeducation
Analyse energy consumption data
IETEducationIETEducation

Analyse energy consumption data

(0)
Use data on energy consumption to investigate how average values are calculated This scheme of work is designed to enable students to explore the relevant issues of energy cost and efficiency. Learners will use functional mathematics to understand that published facts and figures may not always be accurate, and that mathematical insights are necessary to scrutinise data. In this engaging activity for KS3, students will analyse data related to electricity consumption, with a focus on how average values are determined. Students will also evaluate the accuracy of published data sources and consider potential biases. This resource would work well as a main lesson in maths. This activity uses data for England. Students in Wales, Scotland, or Ireland may wish to research data for their areas. To begin the activity, prompt students to create a list of the various types of housing that individuals reside in. Which type of house is likely to require the most energy? Provide students with the Resource Sheet handout, which displays typical yearly electricity bills for different housing types. Students should collaborate in groups of 2-4 to review and analyse the data, and answer the questions included on the resource sheet. Students should be encouraged to reflect on the meaning of this data rather than just accepting it at face value – can they find raw figures and do the calculations to support the information shown? The engineering context Energy efficiency refers to the use of less energy to perform a specific task or achieve a particular outcome. In other words, it is the ability to accomplish the same level of output using less energy input. Energy efficiency can be achieved through the use of more efficient technologies, equipment, or processes, as well as through changes in behaviour and practices. It is an important concept in the context of sustainable development, as it helps to reduce energy consumption and greenhouse gas emissions, conserve natural resources, and lower energy costs. Examples of energy-efficient practices include using energy-saving light bulbs, improving building insulation, and upgrading to energy-efficient appliances. Suggested learning outcomes By the end of this activity students will understand that mathematics is used as a tool in a wide range of contexts, and they will be able to use mathematics to interpret the impact of energy costs on society. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Measuring boat speed - KS3 engineering
IETEducationIETEducation

Measuring boat speed - KS3 engineering

(0)
Time the journeys of different shaped boats and present the results This engaging engineering activity for KS3 considers displaying data from a practical investigation looking at the effect of streamlining a boats hull. Students will be asked to consider how this information can be represented effectively and use this to form conclusions. The reliability of their results will then be discussed. Activity Measuring boat speed Students will use the test rig, which can be found in the resources below, to test several different shaped boats. Students should measure the time taken for each boat to travel a set distance and record the results. Ask the students to discuss the fact that there is no measurable independent variable as it is very difficult to quantify the hull shape in terms of numbers. The students should ponder how they are going to represent these results graphically. If time is available, complete the investigation by repeating the tests. Discuss the sorts of errors that might occur in the collection of results. Learners will then plot their results into a bar graph. This could be used as part of an advertising campaign to sell the boat which could include design, bar chart, a brief conclusion and an explanation as to why the results are reliable. There is also an opportunity to use data logging equipment as well as light gates to further reduce errors in this engineering activity. As an extension, students could calculate speed (s=d/t), and the mean speed for each boat, taking into account the anomalous results. Students could consider what they could measure to draw a line graph and find the optimal hull design. If time is available, students could manufacture and test their own designs and include them within the analysis. This activity will take approximately 45 minutes. Tools/resources required The construction is a fairly simple activity and can be undertaken by your KS3 students (as an after school activity or by a technician) Boat objects Stop Watch Graph Paper Suggested learning outcomes By the end of this activity students will be able to explain when to use a bar chart and when they should be used to display categoric variables, they will be able to evaluate an experiment in terms of its reliability and precision and they will be able to apply scientific and mathematical understanding to an engineering context. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Water conservation
IETEducationIETEducation

Water conservation

(0)
Compare water usage within the UK to that of other countries In this engaging activity students will examine the link between water usage at home and the number of people living in their household, as well as comparing the water usage within the UK to that of other countries. It involves estimating personal daily water usage, interpreting complex data, and understanding how different lifestyles impact water usage. It’s a great opportunity for students to apply their mathematical and analytical skills to real-world problems. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design & technology (DT). This lesson plan continues the theme of water usage developed in the Sewage Tunnels activity but can be delivered independently should the teacher wish. There is also a follow-on Water Consumption activity. Activity: Comparing water usage within the UK to that of other countries Students must estimate how much water they use each day and apply their mathematical understanding to interpret a wide range of complex data to develop their appreciation of why water usage is such an important issue. The resource ‘Water consumption’ is also available as an extension activity. Download our activity overview, presentation and worksheet for a detailed lesson plan for teaching students about water conservation. We also have a class quiz. The engineering context Students will learn how engineers use mathematical modelling to predict and address issues related to water usage and conservation. By demonstrating how engineering can be used to solve real-world problems, students will see the relevance and importance of their mathematical studies. Suggested learning outcomes Upon completion of this activity, students will have enhanced their ability to analyse and interpret a broad range of data. They will gain a deeper understanding of how mathematical modelling is used in real-world scenarios to predict outcomes and solve problems. Additionally, by reviewing, recreating, and possibly improving the mathematical information presented by a Water Board, students will significantly boost their mathematical understanding and application skills. Download our activity sheet for free! The lesson plan includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation