524Uploads
220k+Views
118k+Downloads
All resources
Mathematics behind revolving door design
Using the circumference formula and estimation to design an efficient revolving door
This lesson tasks students with designing a functional and efficient revolving door. It tests practical maths skills such as estimation and calculating the circumference of a circle, while also challenging students with a fun design activity.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in maths.
Activity: Using the circumference formula and estimation to design an efficient revolving door
In this activity students will examine the design of revolving doors for maximum efficiency both in terms of reducing space and minimising heat loss.
They’ll firstly be tasked with calculating the idea entrance/exit arc length based on the door’s diameter. They’ll then be asked to estimate how many people can fit into each door section and how this will impact getting 200 people in and out of the building as the arrive and leave for work.
The GeoGebra file Revolving doors allows teachers to demonstrate the problem and check the solution to the first task.
Download our activity overview and Revolving door presentation for a detailed lesson plan on the maths behind designing a revolving door.
The engineering context
Revolving doors are energy efficient as they prevent drafts (via acting as an airlock), thus preventing increases in the heating or cooling required for the building. At the same time, revolving doors allow large numbers of people to pass in and out.
As such, architects and engineers need to apply mathematics to their designs, which can help to determine how they will work in practice and whether or not they’re fit for purpose.
Suggested learning outcomes
Students will learn how mathematical concepts like circumference and arc length are applied to solving real-world design problems.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation for free!
Please do share your highlights with us @IETeducation.
Product integration - Design the casing for your food temperature probe
In this activity students will design a prototype for a casing and housing a food temperature probe.
The activity can be used as a follow-on activity from our Micro:bit food temperature probe design project. It’s part of a series of resources which support the use of the BBC micro:bit in design and technology (DT) or computing lessons.
Activity: Designing the casing for a food temperature probe
This activity tasks students with turning a BBC micro:bit food temperature probe into a finished product.
Students will need to consider aesthetics and ergonomics, how it can securely enclose and fit the food temperature probe, and also which materials should be used that are fit for purposes. Students will sketch their casing ideas, adding notes explaining their design choices.
Students can also create a prototype of their design using modelling materials (e.g., card).
Download our activity overview for a detailed lesson plan on product integration.
The engineering context
Integrating programmable systems within products is an important part of the design process when working with electronic products and systems. Not only does the system have to function correctly, the finished product also has to be commercially viable in the sense that it must be cost-efficient to manufacture, and attractive enough for potential customers to want to buy.
Suggested learning outcomes
By the end of this lesson, students will be able to develop a design for a fully integrated electronic product. They’ll also be able to annotate their ideas using technical language.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation
Make a paper house
In this activity learners will design, make and assemble a fold out pop-up structure that shows a self-contained, four room dwelling.
This activity could be used as a main lesson activity to teach learners about the design of folding structures using graphic materials; alternatively, it could be used as an introduction to designing for a client, where the learners could be given a target group such as wheelchair users or a young family. This could also be used as one of several activities within a wider scheme of learning focussing on structures and Design for Living.
Resources required:
Scissors
Paper or Card
Glue
Rulers
Pens, coloured pencils or paint
Paperclips
Optional: three pre-made rooms
Optional: a pre-made assembled example
Download our activity sheet and other related resources for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation.
Please do share your highlights with us @IETeducation.
Design a sports wheelchair
Design a sports wheelchair for a Marathon race
This activity is focused on the design of racing wheelchairs, but also develops understanding about the use of search engines. It considers the use of different search terms when using internet-based research using search engines and how this affects the outcomes of the search. The main activity involves designing a racing wheelchair considering key aspects to enhance its performance.
The first London Marathon wheelchair race took place in 1983 in which 19 people took part with 17 completing the race. The winner, Gordon Perry, set a winning time of just over 3 hours and 20 minutes. With the advancements in engineering and technology since that date, wheelchair racing has come a long way, and in 2021, Marcel Hug won the London Marathon’s men’s wheelchair race setting a new course record with a time of just over 1 hour and 26 minutes!
Activity info, teachers’ notes and curriculum links
In this activity, learners will use the theme of the London Marathon to respond to a design context, investigate the context on the internet and design a wheelchair for sports use.
This activity could be used as a main lesson activity to develop skills in designing. It could also be used to teach learners about how to search the internet effectively to gain the information that is most applicable to their requirements.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
Pens, pencils and drawing instruments
Computer access for internet searching
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Sports logo developement
A project to design a sports logo
This STEM activity is inspired by the Olympics. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice.
This free resource, aimed at secondary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided below.
This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design.
Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want the logo to represent the sport and be eye-catching.
Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport.
They need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo?
Then sketch their idea for a sports logo that meets the needs of both the brief and the design criteria given.
Designs can be produced on the handout provided or on blank A4/43 paper.
Once finished, ask three other people to suggest one improvement each to the design. Then select one of these suggested improvements and use it to update the design.
This exercise should take approximately 50-60 minutes to complete.
What you will need:
Projector/whiteboard
Sketching equipment
Coloured pencils
The engineering context
Many top sport teams have logos that have become famous and appear on all their branded products.
Suggest learning outcome
By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do remember to share your activity highlights with us @IETeducation
Sports logo design
Learn how to design a new logo for a sports team
This STEM activity for kids is inspired by the Football World Cup but can be linked to any sporting event, the Olympics for example. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice.
This exercise, aimed at primary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided.
This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design.
Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want to logo to represent the sport and be eye-catching.
Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport.
They will need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo?
This exercise should take approximately 50-60 minutes to complete.
What you will need
Projector/whiteboard
Sketching equipment
Coloured pencils
The engineering context
Many top sport teams have logos that have become famous and appear on all their branded products.
Suggested learning outcomes
By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Make international flag biscuits
Create biscuits in national flag colours to celebrate an international sporting event
Combine science, maths and design skills to celebrate the different nations taking part in international sporing events such as the Football World Cup and the Olympics. This fun STEM activity focusses on making and decorating biscuits with flags from the different nations.
Students will consider the colours and shapes used in different national flags. They will then make and use icing to colour their biscuits in national flag colours from each teams.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
You can download our step-by-step instructions as a classroom lesson plan and PowerPoint presentation.
And please do share your learning highlights and final creations with us on social media @IETeducation
Queueing theory
Queuing theory is a mathematical discipline that helps us understand the behaviour of queues and make predictions about their performance. It considers various factors such as arrival rates, service times, and queue lengths to analyse and optimise queuing systems.
By applying queuing theory principles, students will learn how to evaluate different queues and determine which will likely offer a shorter waiting time.
Through this activity, you will develop your analytical and problem-solving skills and gain a deeper understanding of queuing theory concepts. You will also learn how to apply these principles in real-life situations, making you a proficient queue navigator in the future!
Activity
In this activity, students will be presented with two different systems of queues. They should think about the benefits and problems with each system. Encourage the students to think about how they can compare the two systems. What figures could they calculate? What diagrams would help to provide a picture of the advantages and disadvantages of each system?
Give the students time to find/calculate their figures and then ask them to present their case.
This task provides an opportunity to discuss the most appropriate average. The mean time for the first system is affected by longer wait times for a few customers. Would the mode time be a better average, as this is the most frequent experience, or is the median better?
The engineering context
Queuing theory is an area of maths which has many applications.
When you log onto the internet, you join a queue for a server.
Computer engineers and systems designers study queues to help them make systems work more efficiently.
Civil engineers use it for traffic lights, and retailers use queuing theory to reduce wait time.
Potential GCSE content
In this activity, students will learn how to determine the mean and calculate the median from a frequency table, compare two data sets using an average and measure of spread and find the quartiles and the interquartile range (IQR). This exercise will also cover statistical diagrams, reasoning, problem-solving, estimation, and modelling.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Estimate the radius of a circle of light
Use proportional reasoning to estimate the radius of a circle of light produced by shining a torch at various distances from the wall
This is an engaging activity for GCSE students in which learners will estimate the radius of a circle of light produced by shining a torch at various distances from the wall.
In order to estimate the radius, students will need to use proportional reasoning or Pythagoras theorem. Students are encouraged to use GeoGebra to gather data.
Problem Solving
To solve the problem presented on the first slide, students will have to employ proportional reasoning. This can be utilised to reinforce concepts of enlargement, and potentially Pythagoras if the follow-up question is used.
For the second problem, students will need to collect data, consider how to manipulate the control variable (distance) and organise the data to aid in identifying any connections between distance and area. Some students may choose to create a graph and extrapolate to determine the distance, while others may seek out a function.
The related GeoGebra file for this activity can be viewed at the GeoGebra website.
What is GeoGebra?
GeoGebra is a free and open-source dynamic mathematics software that allows users to create and manipulate mathematical figures and interact with them in real-time. It can be used to plot graphs, create 3D models, solve equations, and perform complex mathematical operations. It is widely used in education, particularly in the teaching and learning of STEM subjects.
GeoGebra is available for use on desktops, tablets, and mobile devices.
Potential GCSE content covered
By the end of this activity students will have an understanding of Pythagoras’ Theorem, the area of a circle, and enlargement.
Download the free Estimate the Radius of a Circle of Light activity sheet below!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Design a Royal carriage
Designing a new Royal carriage that is electrically powered
Royal carriages have long been a part of history and tradition in the United Kingdom. Famous for the horses that draw them as well as their luxury velvet interiors and the fairytale that surrounds them. The carriages must be comfortable for travel as well as regal. They must accommodate the needs of the Royal family to be used for formal events as well as wedding transport. King Charles III is known for his commitment to environmental issues and passion for a greener world so could the new carriage be electrically powered?
This is one of a series of resources that are designed to allow learners to use the theme of King Charles III’s coronation to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on designing an electrically powered Royal carriage for the event.
The teacher will first introduce the design brief and explain that the carriage must be electrically powered, show the King’s Cypher, reflect the history and traditions of the Royal family, include features to aid comfort and make use of modern, lightweight materials. Learners will then take time to design their carriage and (if possible) teachers can show how an electric motor can be powered using batteries and then charged using a solar panel.
Use the handout for learners to sketch their ideas for the new Royal carriage making sure to annotate their design to show how it meets the design criteria.
As an extension students could design a mechanical system to covert the rotary motion from the motor to the movement of the carriage and/or produce a functional scale model of their proposed design and test how well it works.
Tools/resources required
Pens, pencils and coloured pencils
A4 or A3 paper
3 V motors
Rechargeable AA batteries
AA battery packs
Red and black wires/crocodile clips
AA solar battery charger
The engineering context
Engineers have a moral and ethical responsibility to ensure that their designs are sustainable and do not negatively impact on the environment. This includes using renewable energy wherever possible to power systems and devices.
Electrical, electronic and control engineers need to have knowledge, understanding and skills associated with circuit assembly, including following wiring diagrams.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please share your classroom learning highlights with us @IETeducation.
Create a royal portrait
Create a portrait of King Charles III using reused and recycled material
There is a long tradition of portraits of the reigning monarch being painted and displayed in the royal palaces. They are also seen on a daily basis, with the reigning monarch being portrayed on stamps and currency.
King Charles III is known for his commitment to environmental issues and passion for a greener world and this project also links into sustainability as the portrait will be made by using reused and recycled materials and develops knowledge and skills in Design & Technology, Maths and Art. This project allows schools to decide on materials and scale depending on resources and facilities.
The teacher will first explain what a portrait is and why kings and queens have them painted, drawn or photographed using examples from the presentation. The learners will then take some time to study their own faces using a mirror, looking closely at facial features and discussing which reused or recycled materials could be suitable for different features, colours and textures, thinking about how they can make a portrait. Learners will then design and make their royal portraits, with the option to scale up as a class to create a large-scale portrait at the end if desired.
This activity can be simplified (particularly for less able students) by providing a template with outlines of the head and main features to guide learners where to place materials.
As an extension students could add a background to the portrait and/or add additional features such as King Charles III name, the things he likes or an environmental message. Teachers could also fly a drone over the large scale portrait to get an image of it that can be shared with the school in an assembly or parent event.
Tools/resources required
Mirrors
Paper and card, A4 squared paper
Drawing instruments, such as pencils, colouring pencils, pens and rulers
Scissors
Glue sticks
Portrait template (optional, for differentiation)
A range of reused and recycled materials.
For extension activities: chalk or masking tape, a drone
Example portraits (if available)
The engineering context
All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients.
Suggested learning outcomes
By the end of this free resource students will be able to design from a brief; gather suitable materials and explore how they might be used to create a collage portrait; and create a visual outcome using recycled and reused materials.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please share your classroom learning highlights with us @IETeducation.
Create a stone garden display
Create a stone garden display for the school entrance to celebrate the coronation of King Charles III
In this activity learners will make use of the theme of the King’s coronation to design a rock garden in the style of a flag or other item to commemorate the event. They will consider the design brief for the criteria, use a template to produce a design on paper, consider the scale for the final display and produce the final display.
The teacher will first explain what a commemorative stone garden or display is with suitable examples which learners will discuss to state what is good about each example and what could be done better. Learners will then discuss which images should be used, for example, a Union Jack flag or a crown. The teacher will then lead the learner through the stages of design, scaling up, making and installing their stone garden where the class will come together to assemble their display in the designated area at school.
This activity can be simplified (particularly for less able students) by supplying regular sized pebbles and cutting out the paper rocks to be the same size as these pebbles, then missing out the maths scaling part of the activity. To help, learners could also be provided with images for inspiration, e.g. flags, crowns, school entrance locations, etc.
Use the handout for learners to cut out the 2D paper stones, sketch their design ideas onto them and assemble their stones into their garden design.
As an extension students could create a border around their display incorporating flowers and plants and/or design a new flag to represent the whole of the United Kingdom.
Tools/resources required
Coloured paper – red, blue and white
Scissors
Glue sticks
Alternative: coloured pencils or paints
Paint (water based acrylic paint)
Brushes and water to clean them
Gloves and overalls
Stones and small cobbles
Paint suitable for outside use
The engineering context
All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients.
Using natural materials is becoming more common in the built environment. It is important for engineers to have a working knowledge of different natural materials and their potential applications.
Suggested learning outcomes
By the end of this free resource students will be able to design and produce an attractive stone display to celebrate the King’s coronation; produce designs that meet a given brief; and be able to use measurements and scaling when designing.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Audio editing
Record and edit your own interview
In this engaging resource written with assistance from Archives of IT learners will find out why it is important for us to interview people and what a good interview looks like, before creating an interview script and recording their own interview which can be played back to the class. Once finished, learners can add music and sound effects to the recording or turn it into a podcast.
Activity info, teachers’ notes and curriculum links
In this activity learners will develop an understanding of the reasons for interviewing and how to carry out, record and edit an interview.
This activity could be used as a main lesson activity to support the development of communication skills in English or an understanding of documenting history. It could also be used to introduce the use of recoding and audio editing software in computing.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Downloadable content
• Audio editing activity
• Audio editing presentation
Tools/resources required
Writing implements
Recording facilities (for example, computer, directional microphone)
Sound recording (and editing) software
Consent forms printed, as applicable
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Design a London marathon costume
Designing a charity costume to wear on the day
The London Marathon takes place every year and is a great opportunity for charities to raise money to support their causes. Can you design an eye-catching costume that runners can wear whilst taking part?
Activity info, teachers’ notes and curriculum links
In this activity, learners will use the theme of the London Marathon to design a costume for participants who are raising money for charity. They will consider how modern and smart fabrics could be used in their design, such as those that wick moisture. They will then use their knowledge to develop a suitable outcome to match the given design brief.
This could be used as a one-off main lesson activity to develop designing skills in Design & Technology and understanding of fabric types in textiles. Alternatively, it could be used as a part of a wider scheme of work to develop designing and graphical skills in Design & Technology.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
Paper
Pens, pencils and coloured pencils/pens
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Wheel materials
Testing materials to see which material is the most suitable for a wheel
This resource has been developed with the support of the Bugatti Trust Museum and Study Centre and focuses on testing materials to see which material is the most suitable for a wheel using Engineering and Math’s skills.
Ettore Bugatti was the founder and designer of Bugatti sports cars. He was the first designer to use aluminium wheels to decrease the weight of Grand Prix racing cars, designing one of the most successful racing cars in the world.
Activity info, teachers’ notes and curriculum links
In this activity learners will test various discs made from different materials to see how they perform as a wheel.
This activity could be used as a main lesson activity to teach learners about the physical properties of materials or approaches to testing in the context of practical applications. It could also be used as part of an introduction to the practical use of numeracy within engineering.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
• Discs of material, 140 mm diameter with a 10 mm central hole; for example, steel, aluminium, acrylic, plywood
• Metal bar or pipe, 8-10 mm diameter
• G clamps or vices
• Masking tape
• Weights – various, 250 g to 1 kg
• Stopwatch
• Calculators
• Rulers and writing implements
• Optional: scales to weigh the discs
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Make an Erhu - a Chinese 2-stringed instrument
Manufacture a traditional Chinese two-stringed musical instrument called an 'Erhu’
In this activity learners will use the theme of the Chinese and Lunar New Year to learn about and make a Chinese two-stringed musical instrument called an Erhu. They will learn about the purpose of an Erhu and its main parts. They will then use hand tools and equipment to manufacture their own Erhu and test it.
The erhu is a Chinese two-stringed bowed musical instrument. It is used as a solo instrument as well as in small ensembles and large orchestras. It can imitate many natural sounds such as birds and horses.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Tools/resources required
Tin can
Piece of wood
2 x M5 screw, 4 x M5 nuts
Fishing line
Hacksaw/multi-tool
Drill and drill bits
Hot glue gun
Wood saw
Violin bows (if available)
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Solar powered engine
Making a model of an electric aircraft engine and calculating how long this could power an aircraft using solar energy.
Under the future of flight theme, learners will make a model of an electric aircraft engine that uses solar-powered rechargeable batteries and a motor. They will then test their circuit to see if it works and calculate how long it can run for before it needs to be recharged.
This activity could be used as a main lesson activity to teach about assembling models of circuits and the use of renewable energy. It could also be used as part of a wider scheme of learning to support focussed practical skills or about engineering career opportunities within the aviation sector.
You will need
Solar AA battery charger
2 x rechargeable AA batteries
AA batteries connector/holder
Red and black crocodile clips
Slide or toggle switch
Electric solar motor
Atlas (for extension activity determining potential journey destinations)
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Cabin mood lighting
Use colour-changing LEDs for a mood lighting circuit that can help passengers to relax whilst inside an aircraft cabin.
This activity could be used as a main lesson to teach about soldering, assembling circuits and the function of components or to support learning about colour and how it changes our response to products.
You will need:
Soldering iron, stand and mat/base
Solder
Mood light circuit board
5 V power supply e.g. a USB cable
Slide switch
5 mm colour changing LED
Protective resistor for the LED
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
How high will it go?
Find the height achieved by a flying object using trigonometry.
In this activity learners will work out the height of a released balloon using a clinometer and trigonometry. This is one of a series of resources designed to allow learners to use the theme of the future of flight to develop their knowledge and skills in in Design and Technology, Engineering and Mathematics.
This activity could be used as a main lesson activity to teach learners about the practical application of trigonometry. It could also be used as part of an introduction to the use of trigonometry within engineering.
You will need:
Thin card
Balloons
Balloon pump, if required
Brass split pin paper fasteners
Scissors
Sharp pencils and erasers
Calculators
Tape measure
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Stop it: Design a system to slow a spaceship descent
Develop a parachute-type system to slow a landing spacecraft.
In this activity learners will make use of the theme of the future of flight to develop a parachute type system that will help a spacecraft to land and stop safely. They will be able to make design decisions contributing to the performance of their solution. They will then test their prototype to see how well it works.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation