524Uploads
220k+Views
118k+Downloads
All resources
Hydrogen power
How to make hydrogen from water.
In this activity learners will make use of the theme of the future of flight to investigate one of the potential energy sources of the future. They will discuss the problems associated with the use of oil-based fuels and how the use of hydrogen fuels could solve them. They will then produce hydrogen from water and investigate ways to make it work better.
This activity could be used as a main lesson to teach about power supplies and renewable energy within a transport context. It could also be used as part of a wider scheme of learning to teach about sustainability and environmental issues.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Flying high
Calculating the amount of energy needed to launch a rocket into space.
In this activity learners will make use of the theme of the future of flight to calculate the amount of energy needed to launch a space rocket. They will discuss the meaning of the term escape velocity and then perform calculations based on the Space X and Saturn V rockets.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Hero engine
**This activity introduces the concept of force and motion and energy transfer through the making of a rotary water-powered ‘hero’ engine. **
This resource focusses on a water-powered ‘hero’ rotary engine, which converts water pressure to rotary motion. Devices of this type, called aeolipiles, were described by the mathematician Hero of Alexandria around 2100 years ago. These operated on the same principle but used water that was heated to make steam, rather than just water pressure.
You will need:
Empty plastic one litre bottles
String or thread
Sticky tack
Drinking straws
Felt tipped pens
Scissors
Rulers
Sharp point, such as a bradawl, large needle or metal skewer
Stopwatch (for extension activity).
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please do share your learning highlights and final creations with us on social media @IETeducation
Aircraft chic
Create a presentation suggesting how a company could re-use aircraft or parts of aircraft.
In this activity learners will make use of the theme of the future of flight to create a presentation for the board of the company suggesting how they could re-use aircraft, or parts of aircraft, being retired from their fleet. They will research the different parts of an aircraft and existing products that make use of their old parts. They will use this information to create ideas for their own products.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Pop-up airport
Providing disaster support for a famine hit country.
In this activity learners will design a pop-up airport to allow the delivery of food supplies to people in famine affected, remote areas. They will consider the requirements of the airport and how it can be made quickly using readily available resources. They will then produce a sketch of their idea ready for implementation.
You will need:
Access to word processing or desktop publishing software (if using ICT)
Paper
Card
Pencil and pens
Ruler
Tape and/or glue
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Which materials for an aircraft?
Measuring the density of materials to choose which to use in an aircraft.
In this activity learners will discover the density of materials through testing. Learners will have an opportunity to weigh and work out the volume of an object. They will use this information and their number skills to calculate the density. They will then repeat this for other objects and discuss their results as a class.
You will need:
Range of different materials to test
Bowls and trays
Science beakers/Measuring jugs
Weighing scales
Water
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Reindeer treat chemical reactions
Experiment to find out which substances effect oxidation of apples
Thinking about what snack to leave out for Santa and his reindeers on Christmas Eve, our activity suggests cut-up apples but experiment with ways to prevent discolouration. Using different substances such as saltwater, lemon juice and milk, students will test their maths and science skills and learn about oxidisation, acids, alkalis and more.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
Make Rudolph shaped cookies in class
In this fun Christmas STEM baking activity, students will make Rudolph cookies, with his famous red nose. Combing maths and science, this activity will teach students precision measuring, different imperial measurements, chemical changes and more.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
DIY Winter window decorations
This activity will engage student’s maths and science skills, making them think about adhesives, molecular bonds and more!
One of the traditions at Christmas time is to decorate our houses. In this creative Christmas STEM activity, students will be making wintery window decorations which will stick to a windowpane all by themselves!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
Create crystals
Watch crystals form from a bicarb solution
It’s hard to imagine a wintery snow scene without crystals and icicles. Drips of icy water freeze into long frozen structures which hang from roofs, windows and from the branches of trees. In this fun activity students are going to create crystals without the use of a fridge! This experiment will test and improve their maths and science skills.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
Freezing point experiment
Engage your student’s sciences skills and get them thinking about liquids, ions, icy surfaces and global warming
In this winter STEM activity, students will experiment with salt to test different freezing points. This activity will engage their sciences and maths skills and get them thinking about liquids, ions, icy surfaces, global warming and more!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
Develop a programmable counter
Investigate a decade counter circuit and compare it to a programmable counter
This resource is part of a collection that supports using the BBC micro:bit for Design and Technology lessons.
In this activity, students will investigate a decade counter circuit. They will then compare the operation of this to their programmable counter.
Learners may need to recap basic circuit symbols and the use of circuit diagrams before attempting this activity.
If students have not used circuit simulation software previously, they may benefit from a teacher demonstration of this. Any circuit simulation software that is available in school and that supports decade counters can be used. Popular examples are Circuit Wizard and Yenka.
The teacher may need to check the circuits drawn by learners prior to them testing the circuits, to ensure that they have been correctly drawn, and therefore the test results are accurate.
If learners encounter switch bounce they could investigate the issue further and look at ways to reduce it.
This is an ideal exercise for learners to develop their technical knowledge related to the use of decade counters in electronics and compare their operation to similar programmable systems.
This is a quick and simple activity that will take approximately 20 minutes to complete.
Tools/resources required
Projector/Whiteboard
Exercise books or folders
Circuit simulation software (e.g. Circuit Wizard, Yenka etc.)
What is the BBC micro:bit?
The BBC micro:bit is a small, programmable computer that was designed for education purposes. It was developed by the BBC in partnership with several technology companies, including Microsoft and ARM. The micro:bit features an LED display, buttons, sensors, and Bluetooth connectivity, making it a versatile tool for teaching programming, electronics and other STEM subjects. It is popular in schools around the world and has been used to create a wide range of projects, from simple games to complex robotics. The micro:bit is also affordable and accessible, with many free resources and tutorials available online for students and teachers to use.
Suggested learning outcomes
By the end of this activity students will be able to simulate and test the operation of a decade counter circuit and they will be able to compare and contrast hardware based electronic counters with programmable counters.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Model boat maths challenge for GCSE
Calculate the distance a model boat will travel across water
Two friends are on opposite banks of a river which is 30m wide. One of them has a model boat and plans to send it across the river to the other. The boat has a small motor which moves it forward. Once the boat is in the water, it cannot be steered. Can your students calculate the distance that the model boat will need to travel across the water?
This fun maths challenge will teach students about forces and motion and is perfect for GCSE students!
Activity: Model boat maths challenge for GCSE
The students can work individually or in pairs. Download the teacher presentation below and allow the students some time to read the task on the first slide, then show them slide 2.
Students will need to find the distance downstream from the starting point. A generalised approach to such problems should be introduced along with slide 2.
Leave the students to work on the task and then compare approaches and answers. A GeoGebra file has been supplied to help with the discussion.
Problem Solving
The students can tackle the problem in a number of ways. Some may choose to look at the path of the boat at 1 second intervals, possibly plotting the path on a graph. This is the way the GeoGebra file works. Others may use trigonometry to find the angle the boat travels and then use this with the 30m width of the river to find the distance downstream.
Another approach would be to use a scale drawing.
Pythagoras theorem or trigonometry can be used to find the displacement of the boat from its original position.
The GeoGebra file may be useful to students who wish to gather some results for the general approach or to check their answers.
Discussion Points
This activity could provide an opportunity to introduce vectors and possible resultant force, making a connection with Physics.
Comparing the advantages and disadvantages of various approaches would provide students with the opportunity to consolidate their learning.
Extending the problem
It could also be possible, with some students, to consider how to point the boat upstream, so that it ends up at the point directly opposite the start.
Potential GCSE content covered
In this activity students will cover graphs, Pythagoras theorem and vectors.
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Mathematical measuring - lengths of leaves
The natural environment – measuring leaves
Trees and their leaves are an important part of our natural environment. We can use our maths and science knowledge to better understand them and hence the environment around us!
In this activity each participant chooses a tree to collect six leaves from. Once the whole class has collected their leaves, return to the classroom to measure the lengths and widths of six leaves from a single tree. Place this data in a table and then calculate the mean average length and width of the leaves from the tree.
As a class discuss the meaning of these values. What do they tell us about the size of the leaves on each tree sampled?
Activity info, teachers’ notes and curriculum links
This is one of a set of resources developed to support the teaching of the primary national curriculum; they are designed to support the delivery of key topics within maths and science.
This activity could be used as a main lesson activity to teach learners how to collect data and calculate the mean value of a data set. It could also be used as one of several activities within a wider scheme of learning focusing on the use of maths and science to understand the natural environment.
Tools/resources required
Access to an outside area with trees and leaves
Rulers and/or tape measures
Calculators
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your classroom learning highlights with us @IETeducation
Create a map of local flora and fauna
Gather information about local flora and fauna and create a map with coordinates showing the location of plants and animals
In this engaging activity for KS2, students will work in groups to collect information about the flora and fauna in their area. They will then create a map that displays the location of these plants and animals using coordinates.
This is one of a set of free STEM resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource combines understanding of the natural world with maths skills, to create a map and guidebook of the local flora and fauna.
A fun and practical exercise in which students will take real measurements of the area and use grid paper to create a scale representation. Additionally, students will incorporate digital photographs or drawings of the flora and fauna to create informational pages for the guidebook.
For optimal results, it is advisable to conduct this activity in small groups. Selecting a suitable location is crucial, which could be the school grounds, nearby park, or other accessible area such as a local forest.
It may be best if only one team member produces the map, and the other focus on measurement and describing the observed flora and fauna. The flora and fauna could include plants, trees, observed birds and wildlife and insects.
This activity will take approximately 80-120 minutes to complete.
Tools/resources required
Access to an appropriate outside area with flora and fauna
Pencils
Rulers
Clipboards
Digital cameras
Grid sheets to map the local area
Tape measures
Chalk
Glue sticks or sticky tape
The engineering context
Environmental engineers across the globe engage in the mapping of flora and fauna to monitor changes in the natural world. Their research spans a variety of areas, including the impact of deforestation in the Amazon, the effects of climate change in the Polar regions, and the consequences of flooding in Asia.
Suggested learning outcomes
By the end of this activity students will be able to draw a map, they will be able to plot the positions using coordinates and they will be able to create, identify, and describe flora and fauna. Additionally, they will be able to use SI units for lengths/distances and they will be able to measure an area and scale it onto a map.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Salute - KS1 maths card game
Get ready to engage their mathematical skills in this fast-paced and interactive math card game.
This game of Salute will challenge addition abilities, help improve number recognition, and enhance critical thinking skills. It promotes quick thinking, decision-making, and collaboration, making it a perfect activity to strengthen mathematical foundations while having fun.
This activity could be used as a starter activity covering learning from the previous lesson, a plenary activity reinforcing learning that has just taken place, or as one of several activities within a wider scheme of learning focusing on addition and subtraction.
The rules
Form groups of three and get ready for an engaging activity. Here’s how it works:
Players 1 and 2 each select a numbered card from a pile and hold it against their forehead, facing outward. Make sure they cannot see their own number.
Player 3 adds the two numbers together and announces the total.
Players 1 and 2 use their deduction skills to guess the numbers on their cards based on the total announced by Player 3.
Rotate the roles, with each player taking turns as Player 1, Player 2, and Player 3, and repeat the game.
This entertaining game will challenge your observation and mental calculation abilities while providing a fun opportunity to collaborate and strategise with your group members.
For added competition, a time limit could be set on how long learners have to answer each question.
The game can be played until all learners have had a go in the different roles or as many times as required.
How long will this activity take?
This activity will take approximately 25-40 minutes to complete. Download our free, printable numbered cards below to begin. The numbers 1-20 are provided in line with the KS1 curriculum, but if extra challenge is required, these can be added to.
The engineering context
Engineers must regularly use mathematics knowledge and skills as part of their everyday job. For example, adding up how many parts are needed to build an aeroplane, calculating how strong a bridge needs to be or working out how much material is required to make the surgical gown for a hospital.
Suggested learning outcomes
By the end of this activity, students will be able to read the numbers 1-20, solve addition problems using the numbers 1-20, and they will be able to add one and two-digit numbers up to 20.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Product analysis using the 5 Ws and ACCESS (primary)
Examine and analyse existing products
This is one of a set of resources developed to support the delivery of key topics within science and design and technology (DT). This resource focusses on analysing existing products.
This could be used as a one-off activity or as part of a wider unit of work focussing on the design process.
Activity: How to carry out a product analysis
In this activity students will learn about two techniques that are commonly used to analyse existing products – the 5 Ws and ACCESS FM. They will discuss the key terms in each of these techniques and use them to investigate familiar products. They will also complete an interactive quiz to test their knowledge.
The 5 Ws
Who: Who is the user of the product?
What: What does the product do? What materials is it made from?
Where: Where is the product used? Where was it made?
When: When is the product used?
Why: Why does the product exist? Why is it designed the way that it is?
ACCESS FM
A = Aesthetics – How does the product appeal to the five senses?
C = Cost – How much does the product cost to make or to buy?
C = Customer – Who will buy or use the product?
E = Environment – How does the product affect the environment? Is it made from recycled materials?
S = Size – What is the length, width and height of the product?
S = Safety – Is the product safe to use?
F = Function – How does the product work? What does it do?
M = Material – What materials and components have been used to make the product?
The engineering context
Understanding product analysis is vital for budding engineers. It equips them with the ability to evaluate how well products and systems perform their intended functions. By understanding why products are designed the way they are, they can devise better engineering solutions in the future.
Suggested learning outcomes
Upon completing this activity, students should understand what is meant by ‘product analysis’. They will be able to use the 5 Ws to examine existing products and apply ACCESS FM for detailed analysis. By discussing key terms and investigating familiar products, they will develop a deeper understanding of how products work and how they can be improved. This knowledge will serve as a solid foundation for their own design processes in the future.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can download our step-by-step instructions below as both a classroom lesson plan and a PowerPoint presentation.
Please do share your highlights with us @IETeducation.
DIY planter box
Growing seedlings in compostable home-made paper containers
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on plants and how they grow. Learners will make a compostable plant container, plant and grow a seed.
Plants are an important part of our natural environment. We can use our science knowledge to better understand them and hence the environment around us!
Activity info, teachers’ notes and curriculum links
In this activity learners will make a compostable plant box and then plant and grow a seed that can later be grown outside.
This activity could be used as a main lesson activity, to teach learners how to plant seeds and care for their growth. They will also gain an understanding of what seeds need to grow i.e. sunlight, soil and water.
It could be used as one of several activities within a wider scheme of learning focussing on the use of science to understand the natural environment. It could also be used to develop initial understanding of nets (making 3D forms from 2D shapes), contributing to learning in maths. It could also be used to start a discussion on the environment, as the container is biodegradable, whilst many traditional plant pots are made from polymers (which in turn are made from non-renewable oil), which take hundreds of years to decompose.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
How much paper comes from a tree
In this fun maths activity for KS2, students will measure the weight of different paper-based packaging materials and calculate the potential number of items that could be produced from an average tree.
This task will teach learners how to use division to solve real-world problems. It can also function as part of a wider scheme of learning centred around utilising mathematics to comprehend ratios and proportions or as an introduction to sustainability concepts.
By considering the number of natural resources needed to make common everyday items, we can also become informed consumers with more awareness of the environmental impact of our consumption.
What you will need
How much paper comes from a tree worksheet
Selection of paper products
Scales
Pencils
Erasers
Calculators
The engineering context
Engineers must possess knowledge of the number of items they can produce from a single source. For instance, in clothes manufacturing, production engineers should be aware of the number of shirts or dresses that can be made from a single roll of fabric.
Suggested learning outcomes
By the end of this activity, students will be able to know how to use division to solve practical problems, they will be able to convert grams to kilograms, and they will be able to calculate how many paper-based items can be made from one tree.
Download for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
How to work out scale
Scaling activity to change the size of items
In this activity learners will change the scale of items, by doubling or halving the size and drawing them to a new scale. Learners will be shown that multiplication and division are useful methods to change the scale of an item.
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on the use of multiplication and division in the context of scaling an item to either double or half its size.
This activity could be used as a main lesson activity to teach learners how to work out scale or to reinforce understanding of multiplication and division. It could be used as one of several activities within a wider scheme of learning focusing on the use of maths to understand ratio and proportion. It could also support the development of drawing skills in art.
The engineering context
Structural engineers collaborate with architects to design various structures, such as houses, hospitals, office blocks, bridges, oil rigs, ships, and aircraft. They create scaled-down drawings for each of these structures.
Suggested learning outcomes
By the end of this activity, students will know how multiplication and division can be used to work out scale, they will be able to scale drawings back to their original size by either scaling up or scaling down, and they will be able to solve simple problems in scaling contexts, i.e. two times larger and two times smaller.
Download the activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation