524Uploads
219k+Views
118k+Downloads
All resources
Wearable technology
Integrate a heart monitor into an item of clothing
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
There are many reasons to monitor heart rate. For example:
There are 2.7 million people in the UK currently suffering from heart problems. The quicker these problems can be found and treated the better the chance of a full recovery.
Athletes measure their heart rate during training to ensure that they are training in their optimum physical range.
In this unit, learners will use the BBC micro:bit to develop a prototype for a personal heart monitoring system.
Activity info, teachers’ notes and curriculum links
In this activity, learners will design a fully integrated product. They will investigate and apply methods of attaching their device to a piece of clothing.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Which medical imaging technique?
Select a method of medical imaging most appropriate for a particular medical condition
The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other.
Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics.
Activity info, teachers’ notes and curriculum links
This activity gets students to work in small teams to select a method of medical imaging which is appropriate to a particular medical condition. Students are provided with the medical records of eight patients. The different imaging techniques covered in this activity include: CAT, Gamma cameras, MRI, PET, Thermology, Ultrasound and X-rays.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Input, process and output
In this activity students will make a simple infrared circuit to develop their understanding of this technology.
Our “Time for a Game” worksheet introduces students to infrared technologies, using the technology behind the Nintendo Wii as a real-life example.
Through building and testing an infrared circuit, students will learn to identify which components are inputs and outputs, a critical skill that deepens their understanding of how electronic systems function and enables them to design more complex circuits in the future.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). This can be effectively taught within systems and control, or electronic products approaches within design and technology, or through science with an emphasis on energy, electricity and forces.
Activity: Build and test an infrared circuit
Students will work in pairs to construct the circuit outlined in the “Time for a Game” worksheet. After building their circuits, they will test their functionality under different conditions and answer key questions about their design. This hands-on approach will allow students to identify the input and output components of the circuit, understand its performance in various lighting conditions, and consider how these factors would influence the design of a Wii controller.
The engineering context
By building and testing an infrared circuit, students will gain a practical understanding of the engineering process, from conceptualization to testing. Furthermore, this activity will inspire students to consider a career in engineering, as they experience firsthand the creativity, critical thinking, and problem-solving that this field entails.
Suggested learning outcomes
Students will develop a working prototype of an electronic circuit, gaining practical experience in the process. They will learn to identify inputs and outputs in a circuit and test its performance under different conditions. Furthermore, they will have the opportunity to apply their findings to hypothetical design situations, promoting critical thinking and problem-solving skills. This activity will teach students the ability to explain how their research findings could affect their design ideas, enhancing their communication skills and technological literacy.
Download our activity sheet for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
3D shapes nets - practical activity
Using 2D nets to make 3D shapes
Make 3D shapes using cube nets then use this understanding to build a 3D pyramid. This activity introduces the concept of making 3D shapes using 2D nets.
Participants use shape nets, to make three-dimensional shapes from two-dimensional images including a cube and pyramid.
Activity info, teachers’ notes and curriculum links
In this series of activities, pupils will learn about nets and wheels and axles. They will combine these technologies to make the base and body for a vehicle made from card. It could be used at Key Stage 1 to introduce nets and develop practical skills.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Tools/resources required
Copies of the nets pyramid and nets cube handouts, printed on card, 1 per pupil (plus spares)
Scissors
Glue sticks
Optional
Sticky tape or double-sided sticky tape
Pre-made models of each shape, for demonstration (these could be made large size, for example by printing out on A3 card)
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
And please do share your classroom learning highlights with us @IETeducation
Transportation problems
Solving transportation issues around the world
In this activity students will use what they know about community transport systems to suggest possible solutions to existing transportation problems.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Solving transportation issues around the world
Students will watch our short film on transportation planning, which will be the basis for a class discussion on the potential issues that come with holding major events in cities such as the Olympic Games.
Students will then work in teams to review a scenario from our Solving the transport problem worksheet, which includes various transport planning scenarios. Each team will choose a problem to solve and then present their solution to the class.
Finally, students will examine the negative consequences that inevitably come with improving community transport, considering environmental and social factors.
Download our activity overview for an introductory lesson plan on transportation issues for free!
The engineering context
Engineers must often solve transportation problems that can arise in big cities. Whether it’s designing traffic flow for megacities, building accessible infrastructure for rural areas, or integrating sustainable fuels, transportation planning equips engineers to tackle hazards, congestion, isolation, and inefficiency.
Suggested learning outcomes
This activity teaches students how to use community transport to solve social and environmental problems. It will also teach them how to explain the rationale behind these decisions.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation
Design and print a model town
With our design and technology KS3 teaching resource lesson plan and template, learners will create a visual answer to a design situation using both sketching and CAD drawing software, followed by 3D printing a physical model.
This is one of a set of teaching resources designed to allow learners to use practical methods to support the delivery of key topics within Design & Technology and Engineering. This activity is based on CAD and 3D printing and provides a straightforward, practical way to introduce these technologies into the curriculum.
This activity could be used as a main lesson activity to reinforce CAD drawing skills or to introduce 3D printing. It could also be used as part of a scheme of work learning about the design process.
Activity:
Learners will decide upon a building to create and its purpose before sketching three draft ideas. They will then select the best features of their ideas before drawing a final design idea. Learners can share their ideas and concepts with peers for constructive feedback and improvement of designs.
Once their designs have been finalised they will use Onshape to produce CAD models of their buildings and then 3D print them to create a town including the work of the whole class.
Tools/supplies needed:
Pencils
Computer access with 3D drawing package (Onshape, Tinkercad, Fusion 360, Solidworks etc)
3D Printer and filament
The engineering context
CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings.
3D printing in engineering facilitates rapid prototyping, customisation, and the production of complex geometries while reducing material waste and enabling on-demand production.
Suggested learning outcomes
This resource combines design and technology with engineering with the aim that the learners will be able to communicate a design, develop design skills using the Onshape CAD software and be able to 3D print a design idea successfully.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation
Common uses of Information Technology poster
Primary classroom poster exploring how information technology is used outside school.
Download the single poster or order a full set of posters for free form the IET Education website.
Four experiments with magnets
Super simple fun science experiments
These four fun science experiments using magnets are quick and easy to set up, suitable for learning at home or school. Your students will measure the effects of magnetism as magnets pass through tubes made of different materials; create a visual demonstration of Chaos theory with magnets affecting the swing of a pendulum; feel “attract” and “repel” forces of magnetism by placing magnets on either side of their hand, and use the magnetic field to make an object move as if it is alive.
These four practical experiments demonstrate various different scientific principles related to magnets and magnetism, including:
electromagnetic induction
magnetic fields
chaos theory.
Tools/resources required
Projector/Whiteboard
Magnet kit
2 neodymium magnets
plastic radiator pipe sleeves
copper plumbing pipe
Sticky tape
Blu-tack
Steel nut
Cotton thread
Chairs
This activity could be used as a starter or main activity to introduce the effects of magnetism and magnetic fields, or as one of several activities within a wider scheme of learning focusing on different types of forces. These experiments could also be used as an introduction to power generation or the potential uses of magnets in Design and Technology and Engineering projects.
This activity sheet was developed with the support and participation of the School of Engineering at Cardiff University.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Structural engineering
In this activity students will use case studies to investigate how architectural and building issues can be resolved.
It can accompany our Structural engineering starter and How to design a spaghetti roof structure activities as part of a series of activities that explores structural engineering.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Exploring how architectural and building issues can be resolved through real-life case studies
Students will view the design of the O2 arena by watching our Sound design video. They will also investigate the design of Stanstead Airport by viewing our structural engineering presentation. They will look specifically at the requirements of the buildings and the constraints in terms of structural design. They will also explore the design solutions used to overcome potential issues. This will form the stimulus for students to investigate structures in detail. The students will then be asked to explore possible solutions to a given structural design challenges.
Download our activity overview for a detailed lesson plan on structural engineering for free!
The engineering context
Iconic structures don’t just happen by accident. When designing large buildings, there will often be challenges that need problem solving such as eliminating columns for large open spaces. Engineers need structural knowledge to be able to create innovative designs that are safe, functional, and aesthetic.
Suggested learning outcomes
Students will learn how to identify the key features of structural components. They’ll also know how to identify the various pressures a structural element can undergo and then apply their knowledge of structure to design an effective solution to overcome specific issues.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan below.
Please do share your highlights with us @IETeducation.
How to design a spaghetti roof structure
In this hands-on activity students are challenged with designing and engineering a spaghetti roof structure.
It should follow our Structural engineering starter and Structural engineering as part of a series of activities that explores structural engineering. The lesson has been designed to either reinforce or extend a leaner’s basic knowledge of structures by providing a real-life context. It is not intended to form an introduction to structures.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Designing and engineering a spaghetti roof structure
In this fun activity, students will explore structural engineering principles by designing and building a strong, lightweight roof structure using spaghetti. The challenge comes from having to use the smallest amount of spaghetti and glue possible to keep the structure light and strong.
One their spaghetti roof is built, students must identify which areas are in tension and which are in compression so that they decide which parts of their structure need strengthening.
Download our activity overview for a detailed lesson plan on structural engineering and how to design a roof structure for free!
The engineering context
Virtually every building needs a roof. Sometime the function of the room can be simple, it just needs to be strong and light so that it doesn’t fall down. Other times, more ergonomic considerations need to be taken into consideration such as weatherproofing, aesthetics, acoustics, insulation and fire resistance.
Civil engineers must also be able to identify areas of tension and compression in existing structures, such as older buildings or in buildings that are having renovation work done, in order to be able to make recommendations for that will strengthen and support the existing structure.
Suggested learning outcomes
This lesson will teach students how to identify the key features of a structural component. They’ll learn how to identify the various pressures that a structural element can undergo and also be able to apply their knowledge to create solutions to given problems.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation.
Sew your own Christmas stocking
In this fun Christmas craft project for secondary school students, learners will design and sew their own Christmas stocking.
Our free resource is designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology and Engineering.
The free activity sheet and instruction presentation are available to download below.
Oh ho ho, and please do share your final creations with us @IETeducation! #SantaLovesSTEM
Develop a travel information system
Develop a programmable information system for users of the London Underground
The London Underground is one of the busiest public transport systems in the world. It is used for over 1.2 billion journeys a year. Passengers need up to date information when using it so that they can plan their journeys well.
This could be used as a main lesson activity with ‘Transport displays designed for users’ as the starter. It is an ideal exercise for learners to develop programming skills, make use of programmable components and embed intelligence into a product design.
In this engaging activity students will use the BBC micro:bit to create a prototype for a travel information system that could be used by passengers on the underground. The system must provide both service (how well the network is running) and timetable information when different buttons are pressed.
When writing the program those who have not done programming before may benefit from writing, experimenting with and downloading the example program shown on the Teacher PowerPoint (also provided as a PDF handout). They can use this as a base for their own program. This is provided as JavaScript Blocks Editor Powered by Microsoft MakeCode (microbit-transport-jsb.hex) and Python Editor (transport.py) code. Teachers will need to decide which programming editor is the most suitable for their learners. Code Kingdom can also be used.
This activity will take approximately 60-120 minutes depending on the ability and prior experience of learners.
Tools/resources required
Projector/Whiteboard
BBC micro:bit system and online programming software
Internet (to access programming software)
Suitable sensor inputs and sound outputs
The engineering context
Transport is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at KS3.
It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners.
Suggested learning outcomes
By the end of this activity students will understand a block systems diagram of an information system, they will be able to successfully program the BBC micro:bit so that the system meets the design criteria and they will be able to understand and apply the use of a moving text on an LED display.
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Design an information system
Design an information display system for disabled people
The importance of smart sensors in our daily routines is growing significantly. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future.
This engaging and thought-provoking activity introduces secondary school students to methods of looking at specific problems. To use the research and knowledge gained to find solutions to a problem, and to allow students to explore these solutions, however improbable they may seem.
Students should design an information display system for use in their school which can be used by those with disabilities. For an example of a system diagram use the ‘Systems diagram’ handout.
Students will communicate their solutions using annotated sketches. They should try and identify the Inputs and Outputs that are necessary.
Furnish the students with both information sheets, and explain that any solution should be considered, no matter how crazy or improbable it seems. They will need to produce annotated sketches of a number of solutions – emphasise that these need to be clear so that others can understand. For each solution, a block diagram should be produced showing the Input-Process-Output for the design.
How long will this activity take?
This activity will take approximately 45 minutes to complete.
Tools/resources required
Woollen gloves
Blindfolds
Ear defenders
Graphical equipment
The engineering context
Engineers play a crucial role in the development and implementation of smart sensors in various industries. Smart sensors are sensors that can process and analyse data, allowing them to make decisions without human intervention. Engineers are responsible for designing and integrating these sensors into systems, ensuring that they function correctly and provide accurate and reliable data. They also play a vital role in the development of innovative ways to use smart sensors to improve various processes, including healthcare, manufacturing, transportation, and many others. With the increasing demand for smarter and more efficient systems, engineers will continue to play a critical role in the advancement of smart sensor technology.
Suggested learning outcomes
By the end of this activity students will be able to identify problems for a specific task, use various methods to research a problem and explore solutions.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Electrical and electronic symbols poster
Secondary classroom poster showing the common electrical and electronic symbols.
Download the single poster or order a full set of posters for free from the IET Education website.
Materials for design
Choosing materials for a new design
It is essential that products used in our everyday lives are fit for purpose. To design a product which will be useful to the customer it is important to understand how different products function and why different materials and components are suitable for different applications.
With this in mind, students will dismantle an engineering product to help them better understand its construction and function. They will then use this experience to create a test that will help in choosing which materials are fit for purpose when designing a new product.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in design and technology (DT). The lesson accompanies our Reverse engineering activity, which should ideally be completed before this lesson.
Activity: Choosing materials for a new design
In this activity students will be given a pair of headphones to dismantle (this must be done carefully, as the headphones will need reassembling afterwards!).
Using our Product investigation booklet, students will conduct a product analysis to investigate its construction. They will be asked to create a test that will help manufactures determine if different materials are fit for purpose to aid choosing materials for new designs.
The engineering context
Engineers may choose to review older products, or competitor products, in order to help them choose materials for certain design or engineering projects. These materials may be the same as what has already been used in what they’ve examined, or the examination may lead them towards producing superior materials.
Suggested learning outcomes
At the end of this lesson students will be able to effectively dismantle and investigate an engineered product to determine how it was made along with its function/purpose.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation.
Structural engineering starter
In this activity students will investigate the design of roofs in terms of purpose and structure.
This activities accompanies our Structural engineering and How to design a spaghetti roof structure resources as part of a series of activities that explores structural engineering. The lesson has been designed to either reinforce or extend basic knowledge of structures to students by providing a real-life context. It is not intended to form an introduction to structures.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Looking at the style and purpose of different roofs
This activity will introduce students to basic structural concepts by looking at the familiar context of roofs.
Students will start by viewing our Structural engineering starter presentation to discuss the purpose and different styles of roofs. They will next consider how their own roof might be structured. They will then be introduced to key terms relating to structural engineering such as tension, compression, structs and ties to give them context for subsequent engineering activities.
By working through our presentation, students will be asked to identify which structural members are in tension and compression.
Download our activity overview for a starter lesson plan on structural engineering for free!
The engineering context
Ingenious structural engineering has been responsible for many impressive roofs such as the O2 Arena, Stanstead Airport or Beijing National Stadium. Understanding roofs can be a gateway to appreciating the ingenuity behind larger structures like bridges, skyscrapers, and other structures that form our built environment.
Suggested learning outcomes
At the end of this lesson students will be able to identify the key features of a structural component. They’ll also know how to identify the various pressures a structural element can undergo. They will be able to apply their knowledge of structures to a given problem in order to design an effective solution.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation.
Motorsport data analysis
Get ready to apply mathematical skills to interpret data, analyse graphs, and uncover the secrets behind the success of motor racing teams.
By the end of this activity, learners will gain a deeper appreciation for mathematics and its real-world applications while also developing your data analysis and graph interpretation abilities.
The printable worksheet contains a GCSE maths lesson plan for secondary school teachers or parents. The presentation includes the relevant graph for this activity and corresponding questions designed for students’ engagement. Allow the students some time to read the task and consider the questions. You can give the students a paper copy of the graph.
Students will need to interpret and read the graph to answer the questions. They must consider what the information displayed in the graph can tell them about the motor race.
For the final task, students must find 107% of 1hr 20min. One approach would be to convert the time to minutes before finding 107%.
Once students have worked out how long the car has left, they will need to use this information to calculate the distance remaining.
Discussion points
Encourage discussion about the answers to the bullet points. Compare the different assumptions they have made and their approaches, particularly with the final task.
Extending the problem
You could ask the students to make a commentary to accompany the graph or examine relevant GCSE questions. Consider using graphs that show more than one vehicle and introduce overtaking and other features.
Potential GCSE content
This activity will cover interpreting graphs and data, speed/distance/time and estimating.
Download the free activity sheet !
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Transport displays designed for users
Investigate what information travellers on the London Underground need
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
The London Underground is one of the busiest public transport systems in the world. It is used for over 1.2 billion journeys a year. Passengers need up to date information when using it so that they can plan their journeys well.
In this unit, learners will use the BBC micro:bit to develop a prototype for a programmable information system for users of the London Underground.
Activity info, teachers’ notes and curriculum links
In this activity, learners will investigate the needs of users of the London Underground, the information that they require and how programmable systems may help to provide solutions.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Mobile phones and health
Investigate the potential effects of mobile phones on our health
The ‘Time for a game’ scheme of work provides an electronics systems context for students to explore infrared technologies.
Activity info, teachers’ notes and curriculum links
An engaging activity in which students will investigate the potential effects to health of the use of mobile phones and their transmitters, which use radio waves and microwaves to transmit information.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Design and make a cookie cutter
In this fun STEM teaching resource learners will discover how to create a 3D model of a basic shape in TinkerCAD and then print it using a 3D printer.
We’ve created this classroom design activity to support the delivery of key topics within design & technology (D&T) and engineering. This teaching resource activity is based on 3D printing and provides a straightforward, practical way to introduce this technology into the curriculum.
This activity introduces the concept of 3D CAD design and some of the basic tools used with CAD software. The software used for the CAD activity is the free and widely used TinkerCAD; however, this could easily be substituted for any other 3D CAD software already available in school.
The activity involves designing a basic shaped cookie cutter, then printing it out using a 3D printer. The guidance given for the printer is generic and may need to be varied depending upon the specific model(s) available in school.
This could be used as a main lesson activity to introduce basic CAD drawing skills or 3D printing. It could also be used as the basis for an integrated scheme of work, where learners subsequently use their cookie cutters to make biscuits, allowing integration with maths (measuring out ingredients) and food technology skills.
Tools/supplies needed:
Computer with TinkerCAD
3D Printer
PLA filament of an appropriate diameter for the equipment available
Optional (for starter): examples of plastic cookie cutters
Follow our step-by-step guide on how to design and make a cookie cutter
Learners will design and make a cookie cutter using CAD and 3D printing.
The engineering context
CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings.
3D printing is an area of huge growth, with applications ranging from small plastic parts to printing metal bridges in place over rivers!
Suggested learning outcomes
This resource combines design and technology with engineering with the aim that the learners will be able to develop skills in CAD and be able to 3D print a design idea successfully.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.