Hero image

520Uploads

200k+Views

107k+Downloads

Make a shadow puppet for Halloween
IETEducationIETEducation

Make a shadow puppet for Halloween

(0)
Learn how to make a shadow puppet for Halloween using card, craft sticks and sticky tape This resource focuses on making shadow puppets and developing supporting knowledge about the relationship between light and shadow. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within design and technology and science. This could be used as a one-off activity in D&T or science and is designed to be carried out individually. The ‘character’ for the puppet made by each learner could be based on personal preference or could be linked to learning in literacy – for example, a character from ‘Wind in the Willows’ if that book is being studied. If linked in this way, the activity could be carried out in small teams, with each team member making a different character from the story. Additional time could be allowed to research the character for the puppet. The shape of the puppet could be taken from the associated handout, from outlines of images found on the internet, or drawn by hand by the learners. This is an engaging and practical exercise for KS2 that will develop students’ science knowledge and encourage their creativity. How long will this activity take? This activity will take approximately 20-40 minutes to complete. It should be noted that there are options presented in the activity sheet which could extend the time needed to carry out this activity. Tools/resources required Card (photocopies of handouts, if used) Masking tape Craft sticks Tracing paper (for screen) Large boxes (for extension activity) Scissors Torches The engineering context Engineers need to understand how light behaves when designing products for many practical applications. For example, when designing buildings, they may consider the provision of windows and artificial lighting; and when designing cars, they may consider the power and position of both internal and external lights and the placement of mirrors. Suggested learning outcomes By the end of this activity students will know that blocking the path of light causes a shadow and to be able to use scissors to make a graphic product. This resource focuses on making shadow puppets and developing supporting knowledge about the relationship between light and shadow. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Halloween maze game
IETEducationIETEducation

Halloween maze game

(0)
Using directions to guide pupils through a maze from the haunted house back to their home In this fun Halloween maze game for kids, students will give each other instructions so that they can successfully navigate a Halloween table maze. This activity provides an engaging and practical way to test KS1 students’ maths knowledge as they will need to use mathematical vocabulary to describe position, direction, and movement. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on developing understanding of geometric directions and involves giving verbal instructions to allow learners to successfully complete a table maze. Clear instructions and correct vocabulary are important to ensure that the learners know how to complete the maze. This activity could be used as a starter or main activity to introduce geometry, position, and direction. This activity needs to be carried out in pairs. One member of the pair will give instructions, the other will use those instructions to navigate the maze. The learner being given the instructions must wear a blindfold. Tools/resources required Projector/Whiteboard Make a maze with tables or use masking tape or other suitable method of marking out the maze layout. Blindfolds The engineering context When engineers program robots they need to be very clear in their instructions to avoid any confusion. For example, the Mars Rover must follow very detailed instructions to help it move safely on the planet and send back pictures. Suggested learning outcomes By the end of this activity students will be able to follow a set of verbal instructions to successfully navigate a maze, they will understand the importance of clear instructions when instructing others and they will be able to use mathematical vocabulary to describe position, direction and movement. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design a jetpack
IETEducationIETEducation

Design a jetpack

(0)
Consider how a jetpack works and sketch an idea for a wearable jetpack In this activity learners will make use of the theme of football on the moon to design a jetpack that can be worn by either the players or referee during a moon football game. They will look at jetpack design and the different parts of a jetpack. They will then sketch an idea for a wearable jetpack for use during the game. This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Science, Design & Technology and Engineering. This resource focusses on learners looking at jetpack aviation to design a jetpack that the players or referee can use during a game of football on the moon. The teacher will introduce the theme of playing football on the moon and the challenges that would be faced when doing this, before introducing and explaining how a jetpack works. Learners will then have time to go through the design brief and sketch their design ideas before reporting back to the class in an informal style or as part of a formal presentation. This activity can be simplified (particularly for less able students) by providing sentence starters for annotations/labelling of sketches and/or providing templates for learners to draw around, such as images of the referee and players. As an extension learners can make a life size model of the jetpack or design a spacesuit to be work by the players and/or referee. This activity is designed to take between 50-80 minutes. The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit? Suggested learning outcomes By the end of this free resource students will be able to design a wearable jetpack for a game of football on the Moon; know the different parts of a jetpack; and understand how jetpacks function and the technology needed to make them work. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design a football robot referee
IETEducationIETEducation

Design a football robot referee

(0)
Designing a robot that can perform the duties of an assistant referee during a football game In this activity learners will make use of the theme of football on the moon to design a robot that can perform the duties of an assistant referee during a game in the ‘Lunar League’. They will consider the challenges associated with playing football on the moon and the duties of an assistant referee. They will then produce a labelled sketch of their idea to meet a set of design criteria. This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on learners designing a robot to act as an assistant referee during a game of football on the moon. The teacher will introduce the theme of playing football on the moon and the challenges that would be faced when doing this, before explaining the task to learners and introducing the design brief. Learners will then have time to sketch their design ideas and report back to the class on their successes and failures and what they would do differently if they were to repeat the task. As an extension learners can design a logo for the Lunar League that could be shown on the side of the robot assistant referee; produce a model and prototype of the design idea, using electronics to make it functional; and/or design a robot referee for the games of football to be played on the moon. This activity is designed to take between 50-80 minutes. The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit? Engineers have a moral and ethical responsibility to ensure that their work is sustainable and that they do not negatively impact the environment. This includes the use of sustainable energy sources to power products. Suggested learning outcomes By the end of this free resource students will be able to understand the challenges associated with playing football on the moon; understand the roles and responsibilities of an assistant referee in a game of football; and be able to design a robot that can perform the duties of an assistant referee for a game of football on the moon. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design a football pitch
IETEducationIETEducation

Design a football pitch

(0)
Designing a football arena for the moon In this activity learners will make use of the theme of football on the moon to design a future football stadium for playing the game on the moon. They will think about the main design considerations and requirements for the stadium. They will then learn how to draw a football pitch step by step and produce annotated sketches of their idea. This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Design & Technology, Graphic Design and Engineering. This resource focusses on learners designing a stadium for playing football on the moon. The teacher will introduce the theme of playing football on the moon, before introducing and discussing the design brief with learners. Learners will then have time to research and design their stadia for playing football on the moon. This activity can be simplified (particularly for less able students) by providing partially completed arena designs for weaker learners to add to and improve and/or providing card or paper cut outs of different arena elements that they could assemble to produce a finished design. As an extension learners can introduce vector illustration to their design or make a card scale model of the stadium and/or design a stadium for playing other sports on the moon, such as athletics, rugby, cricket or netball. How would the requirements of these differ from football? This activity is designed to take between 50-70 minutes. Tools/resources required Pens or pencils Coloured pencils Rulers Paper Computer and internet for research The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit, how will we develop the facilities to live happy, healthy and fulfilling lives? Suggested learning outcomes By the end of this free resource students will be able to understand the main considerations when designing sports stadia; design a stadium for playing football on the moon; and present design ideas as annotated sketches. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Build a communication system for the moon
IETEducationIETEducation

Build a communication system for the moon

(0)
Learn about how electronic intercom circuits can help players communicate In this activity students will gain an understanding of how soundwaves travel and are received to allow them to be heard in the ear. Building on students pre-existing knowledge of circuits this activity focusses on how football players on the Moon could communicate to each other using electronics. Students then apply their skill to build an intercom circuit. This resource uses the theme of football on the Moon to allow learners to develop their knowledge and skills in design & technology, mathematics and science. In this activity learners will use the theme of football on the Moon to learn about how electronic intercom circuits can help players communicate. The teacher will introduce the activity and explain how sound waves allow us to hear. The teacher will then discuss the problems communicating on the Moon and explain why an electronic circuit is necessary. Learners will then have the opportunity to manufacture and test their own intercom. This activity can be simplified (particularly for less able students) by placing components onto the PCB/stripboard prior to soldering and/or using helping hands to hold PCB/stripboard in place. As an extension learners can research what methods could be used to make the intercom wireless. This activity is designed to take between 40-60 minutes. Tools/resources required Paper cups and string Sharp pencils and sticky tack Electronic components (see PPt list on slide 7) Soldering irons and stands Helping hands Wire strippers and cutters Lead free solder PCB making kit Tracing paper to print PCB mask Stripboard (see PPt slides 16-18) Stripboard track cutters The engineering context Engineers create and develop communication systems for numerous activities that take place in very different environments. For example, deep sea divers need to communicate underwater and armed forces have to communicate in all weather conditions. Suggested learning outcomes By the end of this free resource students will be able to understand how hearing works translating sound waves; understand how sound waves can travel through string by vibration and wire by electrical signal; and be able to build an intercom circuit. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a terrarium to grow grass on the moon
IETEducationIETEducation

Make a terrarium to grow grass on the moon

(0)
Grow grass in a terrarium to use on a football pitch on the Moon In this activity learners will make use of the theme of football on the moon to make an experiment of terrarium, so that grass can be grown for a lunar football game. This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Science, Design & Technology and Engineering. This resource focusses on making a closed terrarium with glass jars to show how grass could be grown on the moon, therefore overcoming some of the external temperature issues of growing grass in this environment. The teacher will introduce the activity and the theme of travelling to the moon, before discussing the challenge with learners. Teachers can carry out demonstrations at stages throughout the lesson to show what is required and check that all learners understand and carry actions out in the correct order. This activity can be simplified (particularly for less able students) by providing pre-measured amounts of materials and marked jars for learners to fill to. As an extension students can discuss and experiment with the effects of rotating the jars. What would happen if this didn’t take place? Students could also have a go at identifying other plants that could be grown in the terrarium for use on the moon e.g. food plants. This activity is designed to take between 35-65 minutes plus growing time and of course, caring for your terrarium. Tools/resources required Clean jam jar and lid Activated charcoal Stones Soil Grass seed The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit? How will we grow plants, grass and food? Suggested learning outcomes By the end of this free resource students will be able to understand the concept of living organisms surviving on the Moon; set up an experiment to grow grass in a terrarium and be able to evaluate the findings of the experiment. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design an astronauts menu
IETEducationIETEducation

Design an astronauts menu

(0)
Selecting and comparing foods for a spaceflight to the moon In this activity learners will make use of the theme of travelling to the moon to design a menu that is suitable for astronauts. They will experiment with different types of food and test their suitability for space travel. They will then decide what food astronauts eat in space and create a menu that includes breakfast, lunch and dinner for space travellers, and considering ready to eat food packages… And don’t forget the salt and pepper! The teacher will introduce the activity and the theme of lunar travel and exploration and finding out about food in space, before playing a video for students to watch. Teachers will then introduce the design brief and set students the task of designing an astronauts’ menu. This activity can be simplified (particularly for less able students) by providing partially completed menu ideas to guide learners; providing premeasured ingredients to reduce the chance of errors when designing the menu; and/or providing foods that are suitable rather than asking learners to bring examples in from home. As an extension students could design packaging for each of the food items in their menu and/or discuss ways of storing the packaged food on a spacecraft, so it is kept safe on the way to the moon. This activity is designed to take between 55-80 minutes. Tools/resources required Pens and pencils Zipper seal bags of all sizes Aluminium foil Plastic wrap Recyclable storage containers Plastic shopping bags Masking tape Markers Portion sizes of food for tasting The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we eat and prepare food, how will we develop the facilities to live happy, healthy and fulfilling lives? Suggested learning outcomes By the end of this free resource students will be able to understand the main considerations when designing a menu for astronauts; know the types of food that are suitable for space travel and be able to test and develop ideas for a menu for astronauts going to the moon. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design a robot to draw lines on a pitch
IETEducationIETEducation

Design a robot to draw lines on a pitch

(0)
Sketching an idea and writing a microcontroller program for the line painting robot to follow This resource focusses on robotics engineering where learners design and write a program for a robot that could mark out the pitch lines for a game of football. Students will produce a labelled sketch of their idea and write a microcontroller program for the electronic aspects of the robot. This is one of a series of resources that are designed to allow learners to use the theme of sports to develop their knowledge and skills in Design & Technology and Engineering. The teacher will introduce the theme of playing football on the moon and the challenges that would be faced when doing this, before explaining the robot design worksheet and task ahead to design and assemble their robot and then program it to complete the task assigned. This activity is designed to take between 90-140 minutes. Tools/resources required Pens, pencils and coloured pencils Crumble controller board and USB download cable Three red crocodile clips and three black crocodile clips Three AA batteries and battery pack Two Crumble motors Crumble software and computer hardware for programming The engineering context Electrical, electronic and control engineers need to have knowledge, understanding and skills associated with circuit design and assembly, and the programming of electronic control systems. Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit? Suggested learning outcomes By the end of this free resource students will be able to understand the challenges of living and playing football on the moon; be able to produce a labelled sketch of a design for a moon based pitch marker robot and be able to write a program for the electronics of the orbit, so it can mark out the pitch. All activity sheets and supporting resources to design a robot are free online to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Create a foldable football goal
IETEducationIETEducation

Create a foldable football goal

(0)
Designing and making a foldable goal that could be transported to and used in Lunar football matches In this activity learners will make use of the theme of football on the moon to design and make a model of a foldable goal for use in a Lunar league football game. They will consider the issues with playing football on the moon and transporting equipment to it. They will then design and make a model of a goal that could be folded into a tube for transport, then opened up and used. This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on learners designing and making a model of a foldable goal that could be transported to, and then used for a game of football on the moon. The teacher will introduce the theme of playing football on the moon and the challenges that would be faced when doing this, before explaining the design brief and task ahead to design, make and test a model goal. This activity can be simplified (particularly for less able students) by providing templates for the shape of the goals and/or pre-cutting the straws and string into required sizes. As an extension students could organise a Lunar Football League with other groups in the school; design and make a model of a space rocket to get your goals to the moon and/or design foldable equipment for other sports, such as Rugby goals or a cricket sightscreen. This activity is designed to take between 60-100 minutes. Tools/resources required Paper straws Scissors String (or wool) Ruler Pencils A bamboo skewer or similar thin rod Sticky tape A cardboard tube (E.g. the inside of a cling-film/tin foil roll) A small ball, such as a table tennis ball The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit? Suggested learning outcomes By the end of this free resource students will be able to understand the challenges of living and playing football on the moon; design and make a model of a foldable goal; and understand the function of different shapes of structure. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Explore electrical resistance
IETEducationIETEducation

Explore electrical resistance

(0)
Testing the electrical resistivity of different materials In this activity learners will make use of the theme of electrical resistance to experiment with an electronic circuit. They will learn how to use an electronic multimeter and will then apply their skills to test the electrical resistivity of various materials. This activity could be used as a main lesson activity to teach about resistors and their use. It could also be used as part of a wider scheme of learning focussing on the selection of materials for different applications. This is one of a series of resources developed in association with the National Grid ESO, to allow learners to use the theme of electronics to develop their knowledge and skills in Design & Technology and Science. This resource focusses on practical experiments investigating the resistance of different materials. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day. The teacher will explain what is meant by resistance and then explain the task to the learners through a series of practical hands-on activities. At the end of the session the teacher will get the learners back together to discuss their findings. This activity can be simplified (particularly for less able students) by setting up the multimeter in advance to the correct range before handing to learners. This activity is designed to take between 45-70 minutes. Tools/resources required Multimeters (digital or analogue) Assorted resistors, including 33kΩ Breadboards Crocodile clips Pencils and paper Glass of water Table salt Selection of materials (for the extension activity) The engineering context Many components, such as integrated circuits, can be damaged by high current. An understanding of resistance allows electrical engineers to select resistors to protect these components, ensuring the effective and continued operation of the electronic devices. Suggested learning outcomes By the end of this free resource students will be able to choose materials based on their resistivity; understand the basics of resistance; and be able to use electronic devices to measure resistance. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Calculate energy use at home
IETEducationIETEducation

Calculate energy use at home

(0)
Calculating the energy used by different electrical appliances and devices within the home In this activity learners will calculate the energy usage of different electrical appliances. They will first calculate the power consumption using P = I V, then use the results of these calculations to work out how much energy each uses in kilowatt hours (kWh). This activity could be used as a main lesson activity to teach about electrical power and energy, and how each are calculated. It could also be used as part of a wider scheme of learning focussing on electricity and the National Grid or as an exercise to use mathematical skills in a practical context. This is one of a series of resources developed in association with the National Grid ESO, to allow learners to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on calculating the energy usage of different appliances and considering how this could be reduced. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day. This activity is designed to take between 40-70 minutes. Tools/resources required Writing implements (pens or pencils) Calculators The engineering context Engineers have a moral and ethical responsibility to ensure that their work is sustainable and that they do not negatively impact the environment. This includes reducing energy consumption wherever possible. As such, it is important that all engineers understand how products and systems are powered and how much energy they use. Power engineering is a very important field which focusses on how energy is generated, transmitted and used by homes and businesses. There are lots of well-paid and rewarding careers available in this area. Suggested learning outcomes By the end of this free resource students will be able to calculate the power consumption of different appliances using P = I V; calculate the energy consumption of different appliances; and be able to show calculated data as part of a table. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
National Grid jigsaw
IETEducationIETEducation

National Grid jigsaw

(0)
Make a jigsaw that shows the main elements in power generation and transmission In this activity learners will make use of the theme of the National Grid to complete a labelled jigsaw of the main parts of the electricity distribution network. They will assemble the different pieces into an image of the National Grid network and use labelled cards to identify each part. This is one of a set of resources designed to allow learners to use practical methods to support the delivery of key topics within Design & Technology, Science, and Engineering. This resource, developed with the support of National Grid ESO, focusses on learners developing knowledge of the different parts of the National Grid by completing a jigsaw of it. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day. The teacher will explain the purpose of the National Grid and how it works before setting the students with the task of completing the jigsaw and then reviewing responses and discussing outcomes on completion of the work. This activity can be simplified (particularly for less able students) by using the jigsaw template with the labels already added. As an extension students could try using the internet to identify the different methods used to generate electricity, and then discussing what the advantages and disadvantages are of each method. Students could also investigate what a transformer is used for and find out why it is needed. This activity is designed to take between 25-40 minutes. Tools/resources required Card for the jigsaw image and labels Laminating facilities (if the jigsaws are to be re-used with different classes) The engineering context It is important that all engineers understand how products and systems are powered. This includes how electricity is generated, transmitted and made available for us to use in our homes and businesses. Power engineering is a very important field which focusses on how energy is generated and transmitted. There are lots of well-paid and rewarding careers available in this area. Suggested learning outcomes By the end of this free resource students will be able to assemble a jigsaw of the National Grid and be able to identify each of the main parts. Students should also be able to describe the purpose of each stage of the National Grid network. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Greenhouse effect experiment
IETEducationIETEducation

Greenhouse effect experiment

(0)
Investigating how carbon dioxide affects temperature In this activity learners will discover the effects of mixing chemicals and the warming effects of the sun. They will undertake a controlled experiment to investigate how gases in the atmosphere affect the heat in an enclosed environment. This activity could be used as a main lesson activity, to introduce the concept of the earth’s atmosphere, or as part of a series of lessons investigating environmental issues, the effect of global warming and greenhouse gasses. This is one of a set of resources designed to allow learners to use practical methods to support the delivery of key topics within Design & Technology, Science, Maths and Humanities. This resource, developed with the support of National Grid ESO, in a practical experiment that investigates how the greenhouse gas carbon dioxide affects the temperature is a closed environment. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day. This activity can be simplified (particularly for less able students) by providing learners with pre-prepared jars and cling film. This activity is designed to take between 50-60 minutes to complete. Tools/resources required 4 large empty jars Cling film Scissors Masking tape Permanent marker Bicarbonate of soda White vinegar Measuring cups and spoons Elastic bands Thermometers (non-contact infra-red type preferred; if using a traditional contact type one thermometer will be needed for each jar) Heat source (radiator with a flat top or a sunny window) The engineering context Many human activities result in emissions of greenhouse gases. These can have a significant effect changing the climate and weather conditions that we experience. There is a wide range of possible ways to reduce these emissions. Engineers play a huge role in such areas, developing and implementing processes and materials that produce lower levels of greenhouse gas emissions, such as sustainable methods of power generation. Engineers also have a significant social influence on our behaviours as a society when we consider the future implications of our actions and consumption. Suggested learning outcomes By the end of this free resource students will be able to understand that carbon dioxide is a greenhouse gas and be able to make a reaction between 2 materials/chemicals. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a flood barrier system
IETEducationIETEducation

Make a flood barrier system

(0)
Design and make a circuit to detect an overflow from a river and raise a temporary barrier using Crumble This is one of a series of resources produced in association with Fairfield Control Systems that are designed to allow learners to use the theme of waterways to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on designing and making a programmable electronic system to control a flood barrier. This activity can be simplified (particularly for less able students) by providing a partially completed template for producing the systems block diagram; pre-download the example program onto the Crumble microcontroller boards; and/or provide a diagram to aid with system assembly. As an extension students could design a mechanical system to convert the rotary motion from the motor to the movement of a barrier; update the program to take account of this mechanical movement (e.g. the time needed to move the barrier); and/or add light or sound outputs to the system to warn people when the barrier is moving. This activity is designed to take between 70-110 minutes. Tools/resources required Crumble controller board and USB download cable Three red crocodile clips and three black crocodile clips Three AA batteries and battery pack Crumble motor Bowl of water for testing To make a moisture sensor: Copper tape Card Sticky tape Scissors The engineering context The waterways (including their protection, maintenance and control) is an excellent context to explore opportunities that working in the engineering industry presents. For example, designing and making control systems that help the waterways to work more effectively. Electrical, electronic and control engineers need to have knowledge, understanding and skills associated with circuit design and assembly, and the programming of electronic control systems. Suggested learning outcomes By the end of this free resource students will be able to design and make an electronic control system for a flood barrier; understand how block diagrams are used to represent systems; and be able to use programmable components to solve a real engineering problem. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a model hydraulic boat lift
IETEducationIETEducation

Make a model hydraulic boat lift

(0)
Making a model of a hydraulic boat lift using syringes This is one of a series of resources produced in association with Fairfield Control Systems that are designed to allow learners to use the theme of waterways to develop their knowledge and skills in Design & Technology, Engineering and Science. This resource is based on the Anderton boat lift and the use of hydraulic systems. The teacher will first discuss what is meant by a hydraulic system and how they are used in engineering applications such as cranes and brakes. The teacher will then demonstrate the steps shown in the presentation to make the model boat lift. Learners will then carry out the activity and produce their own models before showing their boat lift models to peers and asking what could be improved. This activity can be simplified (particularly for less able students) by pre-cutting the templates and corrugated cardboard to size. An exemplar model could be used to illustrate what the final boat life should look like. Print out the handout for learners to cut out and use the templates. As an extension students could investigate how much the boat lift can lift. This activity is designed to take between 45-70 minutes to complete. Tools/resources required Corrugated cardboard sheets 10 ml syringes Cable ties (Size: 20 cm length) 3 mm clear plastic tube Water and measuring jugs Food dye Pencils Sticky tack Adhesive Masking tape, sticky tape or hot glue gun (optional) Craft knife and cutting mat (teacher only) The engineering context The waterways (including their protection, maintenance and control) is an excellent context to explore opportunities that working in the engineering industry presents. For example, constructing locks, building narrowboats or making and maintaining boat lifts. Engineers often make models of working systems to test how they function. For example, a crane designer will make models of different crane designs to see which structures can provide the best support and which designs can lift the heaviest object. Suggested learning outcomes By the end of this free resource students will be able to know the difference between pneumatic and hydraulic systems; know that 3D shapes can be constructed using templates; and be able to make a model of a simple boat lift model using syringes. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Investigate why boats float
IETEducationIETEducation

Investigate why boats float

(0)
Using Archimedes’ principle to investigate why boats float In this activity learners will learn what is meant by density. Learners will perform an experiment to see whether modelling clay moulded into different shapes either sinks or floats. They will discuss why this happens and how the principle demonstrated allows boats to stay afloat. This is one of a series of resources produced in association with Fairfield Control Systems that are designed to allow learners to use the theme of waterways to develop their knowledge and skills in Design & Technology, Mathematics and Science. This resource focuses on understanding density and, through practical measurement, working out which materials are low and high density, and which will therefore float or sink. This activity can be simplified (particularly for less able students) by providing a mould to make the boat shape from the modelling clay or by pre-measuring the mass of modelling clay used. As an extension students could try adding small items into the modelling clay boat. How much weight can it carry before it sinks? Calculate the density of the ball and the boat shape made from modelling clay. This activity is designed to take between 40-70 minutes. Tools/resources required Bowls and trays Science beakers/Measuring jugs Weighing scales Water Modelling clay The engineering context The waterways (including their protection, maintenance and control) is an excellent context to explore opportunities that working in the engineering industry presents. For example, constructing locks, building narrowboats or making and maintaining boat lifts. Engineers often make models of working systems to test how they function. For example, a crane designer will make models of different crane designs to see which structures can provide the best support and which designs can lift the heaviest object. Suggested learning outcomes By the end of this free resource students will be able to understand how Archimedes’ principle works; that is two things are the same size, the one that is denser is heavier; and how boats use the Archimedes principle to stay afloat. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design an organic meal for a king
IETEducationIETEducation

Design an organic meal for a king

(0)
Designing a meal for the King that uses only organic ingredients King Charles III is a passionate environmentalist, who as the former Prince of Wales managed a successful organic farm on his Highgrove estate and has been a big campaigner for environmental issues, including the benefits of organic food, for a number of years. This is one of a series of resources that are designed to allow learners to use the theme of King Charles III’s coronation to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on designing a meal for the King that is produced using only organic ingredients. The teacher will first explain what is meant by organic ingredients and how they are different to genetically modified (GM) foods. The teacher should explain the design brief and criteria, explaining that the meal must be made from only organic ingredients, serve two people, be either a starter and a main or a main and a dessert, be colourful and use varied textures, and cost less than £5 per person (optional). The learners will then produce a sketch of their idea. This activity can be simplified (particularly for less able students) by providing a partially completed design idea and/or providing a list of organic ingredients that the learners could choose from. Use the handout for learners to sketch their ideas for their organic meal making sure to annotate their design to show how it meets the design criteria. As an extension students could prepare the meal in its entirety; cost the meal per portion for the organic ingredients compared to non-organic ingredients; design a starter or dessert to compliment the meal; or create a menu card to be put on the King’s table. The engineering context Engineers have a moral responsibility to ensure that their designs are sustainable, ethical and do not negatively impact on the environment. In the case of food scientists this involves considering their use of organic and genetically modified ingredients, and when each is or isn’t appropriate. Suggested learning outcomes By the end of this free resource students will be able to understand the difference between organic and GM foods; understand the benefits and limitations of organic foods; and be able to design a meal for King Charles III made entirely from organic ingredients. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design a Royal carriage
IETEducationIETEducation

Design a Royal carriage

(0)
Designing a new Royal carriage that is electrically powered Royal carriages have long been a part of history and tradition in the United Kingdom. Famous for the horses that draw them as well as their luxury velvet interiors and the fairytale that surrounds them. The carriages must be comfortable for travel as well as regal. They must accommodate the needs of the Royal family to be used for formal events as well as wedding transport. King Charles III is known for his commitment to environmental issues and passion for a greener world so could the new carriage be electrically powered? This is one of a series of resources that are designed to allow learners to use the theme of King Charles III’s coronation to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on designing an electrically powered Royal carriage for the event. The teacher will first introduce the design brief and explain that the carriage must be electrically powered, show the King’s Cypher, reflect the history and traditions of the Royal family, include features to aid comfort and make use of modern, lightweight materials. Learners will then take time to design their carriage and (if possible) teachers can show how an electric motor can be powered using batteries and then charged using a solar panel. Use the handout for learners to sketch their ideas for the new Royal carriage making sure to annotate their design to show how it meets the design criteria. As an extension students could design a mechanical system to covert the rotary motion from the motor to the movement of the carriage and/or produce a functional scale model of their proposed design and test how well it works. Tools/resources required Pens, pencils and coloured pencils A4 or A3 paper 3 V motors Rechargeable AA batteries AA battery packs Red and black wires/crocodile clips AA solar battery charger The engineering context Engineers have a moral and ethical responsibility to ensure that their designs are sustainable and do not negatively impact on the environment. This includes using renewable energy wherever possible to power systems and devices. Electrical, electronic and control engineers need to have knowledge, understanding and skills associated with circuit assembly, including following wiring diagrams. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please share your classroom learning highlights with us @IETeducation.
Create a royal portrait
IETEducationIETEducation

Create a royal portrait

(0)
Create a portrait of King Charles III using reused and recycled material There is a long tradition of portraits of the reigning monarch being painted and displayed in the royal palaces. They are also seen on a daily basis, with the reigning monarch being portrayed on stamps and currency. King Charles III is known for his commitment to environmental issues and passion for a greener world and this project also links into sustainability as the portrait will be made by using reused and recycled materials and develops knowledge and skills in Design & Technology, Maths and Art. This project allows schools to decide on materials and scale depending on resources and facilities. The teacher will first explain what a portrait is and why kings and queens have them painted, drawn or photographed using examples from the presentation. The learners will then take some time to study their own faces using a mirror, looking closely at facial features and discussing which reused or recycled materials could be suitable for different features, colours and textures, thinking about how they can make a portrait. Learners will then design and make their royal portraits, with the option to scale up as a class to create a large-scale portrait at the end if desired. This activity can be simplified (particularly for less able students) by providing a template with outlines of the head and main features to guide learners where to place materials. As an extension students could add a background to the portrait and/or add additional features such as King Charles III name, the things he likes or an environmental message. Teachers could also fly a drone over the large scale portrait to get an image of it that can be shared with the school in an assembly or parent event. Tools/resources required Mirrors Paper and card, A4 squared paper Drawing instruments, such as pencils, colouring pencils, pens and rulers Scissors Glue sticks Portrait template (optional, for differentiation) A range of reused and recycled materials. For extension activities: chalk or masking tape, a drone Example portraits (if available) The engineering context All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients. Suggested learning outcomes By the end of this free resource students will be able to design from a brief; gather suitable materials and explore how they might be used to create a collage portrait; and create a visual outcome using recycled and reused materials. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please share your classroom learning highlights with us @IETeducation.