Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

785k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE Trilogy (2016) Chemistry - Simple and giant covalent structures
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Simple and giant covalent structures

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lessons starts with looking at the way in which we use models to represent the structure of different compounds, models include the 3D ball and stick model, 2D ball and stick model, dot and cross diagrams and displayed formula showing bonds. Pupils are reminded of the limitations of some of these models, this is something they should be able to recount. Pupils are now shown a diagram to show how intermolecular forces act between simple covalent molecules, pupils should be able to explain the difference between the strong covalent bonds between atoms but the weak intermolecular forces between molecules and how this relates to the the low melting and boiling points of simple covalent molecules. The next part of the lesson is going to focus on giant covalent structures, firstly pupils will watch a video and answer a set of questions. Their work can be self-assess using the answers provided on the PowerPoint presentation. Students are then introduced to the three main covalent structures - diamond, graphite and silicon dioxide. Students will be given a set of information on these structures which they will need to use to complete their worksheet on giant covalent structures. To assess their knowledge of this topic there is a set of ‘quick check’ questions, pupils of a higher ability may want to complete these questions in the back of their books without discussing with others. The work can be assessed using the mark scheme provided. The last part of the lesson focuses on fullerenes and graphene - two other giant covalent structures with unique properties. Students are firstly introduced to the structure and uses of these compounds before watching a video and answering questions about them. The work from this task can be self or peer assessed using the answers provided. The plenary task is for pupils to pretend they are a scientist researching the use of nanotubes, fullerenes and grapehene, they need to come up two ideas of how these materials can be used in future technologies. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Collision Theory: The effect of temperature and surface area
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Collision Theory: The effect of temperature and surface area

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students are firstly introduced to collision theory, outlining the conditions which need to be in place in order for a chemical reaction to occur. Next students are asked to ‘Think, Pair, Share’ factors which they think may affect the rate of a reaction, once students have had chance to discuss this they are introduced to the four main factors which they study within this topic. Firstly, the lesson will focus on surface area, this factor is explained using apple slices turning brown as an example, students are then introduced to the relationship between surface area to volume ratio and the rate of reaction. Students will then need to complete a worksheet of surface area to volume ration calculations, this can then be self-assessed using the mark scheme available. Students will now work through a set of levelled questions looking at data on the effect of surface area on the rate of reaction, this work can be self-assessed using the mark scheme provided in the PowerPoint presentation. The next part of the lesson will focus on the effect of temperature on the rate of reaction, students will firstly need to answer questions whilst watching a video, this work can then be self-assessed using the mark scheme. Next, students will carry out an investigation into the effect of temperature on the rate of reaction between sodium thisulphate and hydrochloric acid. Students will need to collect data and use this to work out the rate of reaction at different temperatures, a worksheet is provided for this task. The last task is for pupils to complete a ‘Quick Check’ set of questions in order to assess what they have learned this lesson, students can then either peer-assess or self-assess their work using the mark scheme provided. The plenary task is for pupils to write a twitter message about what they have learned this lesson, included a hashtag of key words. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Rate of Reaction: The effect of concentration and pressure
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Rate of Reaction: The effect of concentration and pressure

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with students introduced to the idea of concentration in terms of no. of particles per cm3. Students will then need to ‘Think > Pair > Share’ their ideas of how an increase in concentration may affect the rate of a reaction. Students can use their ideas from this first task to make a prediction for the investigation into the rate of reaction between sodium thiosulphate and different concentrations of HCl. Students will need to conduct this investigation using the practical sheet provided, record their results, plot a graph of their results and complete a conclusion. Students can assess their explanation of the results they collected using the answer provided in the PowerPoint presentation. The next part of the lesson will focus on the effect of pressure on the rate of a reaction. Students will firstly be introduced to the idea of an increasing pressure leading to an increase in the number of particles per cm3, using this information and the diagrams provided pupils can ‘Think > Pair > Share’ their ideas about how an increase in pressure would affect the rate of a reaction. Their answer to this question can self-assessed using the answers provided. Next, students need to work through a set of levelled questions on the effect of pressure on the rate of a reaction. This work can be self-assessed using the answers provided on the PowerPoint. The last task is for pupils to plot a set of results onto graph paper, using these data they can calculate the initial rate of reactions for two concentrations of HCl. Students can assess their work using the mark scheme provided on the PowerPoint. The plenary task is for pupils to write down three quiz questions (and the answers!) to test their peers knowledge of what they have learned in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Rate of Reaction: The effect of catalysts
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Rate of Reaction: The effect of catalysts

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a video on catalyts, pupils will need to watch this and use the information provided to answer a set of questions. This work can then be self-assessed using the answers provided on the PowerPoint. This is followed by students sketching a reaction profile diagram into their books to show the effect of a catalyst on the activation energy of a reaction. In the next task pupils will be given some information on catalysts, they will need to read through this and use this to complete a place-mat of questions. Once completed, students can either self-assess or peer-assess their work using the mark scheme provided. Pupils will now work through a set of levelled questions on catalysts using data which is provided, pupils can then self-assess their work using the answers provided on the PowerPoint. The final task is a true or false activity, pupils are given a set of statements which they need to decide are true or false. They can write their answers down on mini white boards so it is easier to assess the whole class. The plenary activity requires pupils to talk to their partner, for a few minutes, about what they have learnt in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW Trilogy AQA GCSE (2016) Biology - Specialised Cells Lesson
SWiftScienceSWiftScience

NEW Trilogy AQA GCSE (2016) Biology - Specialised Cells Lesson

(1)
This is a lesson aimed at meeting specification points within the new AQA GCSE (2016) Biology 'Cells' SoW. For more resources aimed for the new AQA GCSE specification please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will start by looking at the differences between unicellular and multicellular oganisms and what it means for a cell to be 'specialised'. Pupils will then focus on the difference between stem cells in animal and plant cells, they will read a bit of information on this topic and answer questions in their books. Pupils can then peer-assess their work using the answers in the PowerPoint. In the next task Pupils can either use posters places around the room or they each get given a different card with a different specialised cell and they need to complete a table of information on the structure and function of various specialised cells. These include: palisade cell, white blood cell, nerve cell, red blood cell, ciliated epithelial cell, sperm and egg cell. The last activity pupils will need to complete a past-paper question to assess their knowledge. Pupils can then self-assess their work using the mark scheme provided. All resources are included, please review with any feedback :)
NEW AQA Trilogy GCSE (2016) Biology - Diffusion
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Diffusion

(1)
This resource meets specification points for the new AQA Trilogy GCSE Biology ‘Cells’ SoW. For other resources designed for the NEW AQA Trilogy GCSE Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by getting pupils to think about what diffusion is and then giving them the scientific definition for the process. Pupils will then need to read statements about the stages of diffusion, look at diagrams demonstrating these stages and match them together in their books. This activity will be self-assessed using the answers in the PowerPoint presentation. Pupils will then need to think > pair > share about the factors they think will affect the rate of diffusion. Once they have come up with their own ideas and shared them as a class you can show them the animation provided to demonstrate how concentration of particles and size affects the rate of diffusion. Pupils are then asked to consider how temperature might affect the rate, you can demonstrate this affect using the link to another animation which demonstrates this effect. Pupils will then complete a fill-in-the-blank task to demonstrate their knowledge of how these different factors affect the rate of diffusion, which can be self-assessed using the answers provided. Pupils will then look at the importance of diffusion in living organisms and specifically the types of adaptation organism might have to speed up the rate of diffusion. The final activity is a past-paper questions, when completed pupils will self-asses using the mark scheme. The plenary activity is quick past-paper question to complete and mark.
NEW AQA GCSE (2016) Chemistry - Reduce, reuse, recycle
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reduce, reuse, recycle

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson focuses on the problems of metal extraction, particularly to the environment. Students will firstly brainstorm their ideas of how metal extraction can cause problems, then some examples are revealed using the PowerPoint presentation and the need for recycling is also explained. Students will then need to complete a progress check, a set of questions to assess their knowledge of what they have learned this lesson. The answers to which are included in the PowerPoint presentations so students can self-assess or peer-assess work. Pupils will now focus on the extraction and recycling of three metals: aluminium, copper and iron. They will firstly be given some information sheets on these three metals and using these they will need to answer a 6-mark exam question which requires pupils to give a use for each metal and outline reasons why they should be recycled by listing both economic and environmental reasons. This task can then be peer or self-assessed using the comprehensive mark scheme provided. Pupils will now watch a video which outlines limits to recycling, pupils will need to answer a set of questions whilst watching the video. This work can then be self-assessed using the mark scheme provided. The last task is a word search, pupils need to find a list of key words in the word search and for each word they find they need to write a sentence which links that word to the extraction of metal from it’s ore. The plenary activity is for pupil to spend five minutes thinking about what they have learned in the lesson - what they have understood and what they would like to spend more time on. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please email me at swift.education.uk@gmail.com and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Anaerobic Respiration
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Anaerobic Respiration

(1)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.2 Ecosystem Processes. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with a ‘Think, Pair, Share’ task for students to discuss amongst themselves - ‘Why can’t muscles continiously carry out aerobic respiration?’ After a short class discussion, the answer to this questions can be revealed to the class. Students will then complete a fill-in-the-blank task to summarise what they have learned about anaerobic respiration so far, this work can be self-assessed using the mark scheme provided. Students will now watch a video on anaerobic respiration, whilst students are watching this video they will need to answer a set of questions. This task can then be self-assessed using the mark scheme provided on the PowerPoint presentation. Students will now look at how anaerobic respiration is carried in different organisms, particularly plants and yeast, focusing on the importance of anaerobic respiration in yeast for food production. Next, students knowledge of aerobic and anaerobic respiration is assessed using a true or false activity, this task can be marked and corrected using the answers provided on the PowerPoint. The last activity is a set of exam-style questions, students can use their knowledge from this lesson to answer this set of questions in their books. This work can then be self-assessed using the mark scheme provided. The plenary activity requires students to come up with a list of questions for a list of answers which are provided for them in the plenary. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Pure substances & mixtures
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Pure substances & mixtures

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Pure substances and mixtures’ SoW. This lesson starts with a ‘Think > Pair > Share’ task on the differences between an element, compound and a mixture. Pupils will share their ideas as a class before definitions and a diagram for each is revealed on the PowerPoint presentation. The next task requires pupils to ‘Think > Pair > Share’ their ideas about what it means for a substance to be ‘pure’. Again, their ideas can be shared with the class before a definition of purity is revealed. Next, pupils will complete an investigation into the purity of water - they will be provided with three unknown liquids and conducting a range of tests they will need to determine which one is pure water, which is sea water and which is mineral water. They will record their results in a table and then present their findings to the class. Next, students are shown how chemists are able to analyse substances and determine whether they are pure or whether they are a mixture by determining their melting/boiling points, to see if it is at a fixed point or not. Pupils will then watch a video on this topic and will need to answer a set of questions, they can mark this work using the answers provided. Pupils will then be shown two examples of common formulations - paint and cleaning product. Lastly, pupils will then complete a ‘Quick Check’ task - answering a set of questions on what they have learned this lesson. They will then mark their work using the answers provided. The plenary task is for pupils to complete one of the sentence starters provided to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Observing Cells Using A Microscope
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Observing Cells Using A Microscope

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 B1.1 Module on ‘Cells’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with an introduction to cells as the building blocks of life and the smallest units found in living organisms, this is demonstrated with diagrams of animal and plant cells. The scientist Robert Hooke is then introduced as someone who firstly coined the phrase ‘cell’ after observing plant tissue down a microscope, this leads into the main part of the lesson which is on microscopes. Students will be shown a diagram of a microscope and are told some details of factors which should be considered when observing a specimen using a microscope. A video is then played which students need to watch in order to complete a ‘fill-in-the-blank’ task which summarises how to use a microscope and the main parts of the structure of a microscope. This task can be self-assessed using the mark scheme provided. Once this task has been completed it can be self-assessed using the mark scheme provided. Next, students are shown how to calculate the total magnification of a microscope using the magnification of the objective lens and the eyepiece lens. Students will then need to work their way through a set of problems using this calculation. The answers to this task is included in the PowerPoint so students can mark and correct their work. The last part of the lesson requires pupils to follow the instructions included in the PowerPoint to prepare an onion slide to then observe plant cells under the microscope. Once students have carefully prepared their slide they should observe the plant cells at a range of magnifications, sketching a diagram of their observations onto the worksheet provided The plenary requires pupils to copy and complete sentences which summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Hydrocarbons
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Hydrocarbons

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. The lesson begins on a description of hydrocarbons and why crude oil is so useful, this is followed by a video on crude oil. Whilst watching the video students will be required to answer a set of questions, this work can then be self-assessed using the mark scheme provided. The next part of the lesson requires students to watch a teacher demonstration of the distillation of crude oil, students will watch the teacher distill crude oil, removing at least four fractions. The fractions can be passed around the classroom and students will need to complete a results table to assess the smell, viscosity, colour and flammability of each fraction. Pupils will now focus on the structure of different alkanes, they will be introduced to the first four alkanes and be asked to think about why there is a pattern in the formulae of alkanes. Next, students will complete a summary table of the structural formulae, displayed formulae, 3D structure and boiling point of the first four alkanes in the homologous series. Students can self/peer assess their work using the answers provided. Finally, pupils will complete a ‘Quick Check’ task, which involves answering a set of questions about what they have learned this lesson. Those higher ability students may want to turn to the back of their books to avoid looking at notes, lower ability will need extra support. Again, the mark scheme for these questions is included in the PowerPoint. The plenary task requires pupils to write 3 facts, 3 key words and one questions to test their peers knowledge of what they have studied in class today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry (2016) - Complete & incomplete combustion
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - Complete & incomplete combustion

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. The lesson begins with pupils watching a video on the differences between complete and incomplete combustion, whilst watching the video students will need to answer a set of questions. This work can be self-assessed using the mark scheme provided. The next task requires pupils to complete an investigation which demonstrates the products of complete combustion, following the steps provided pupils should identify that limewater turns cloudy due to carbon dioxide and anhydrous copper sulphate turns blue in the presence of water. Next, students will focus on writing word and balanced symbol equations for the complete combustion of a set alkanes. Students can self-assess their work using the mark scheme provided. Students will then be a shown a worked example of a calculation used to work out the maximum amount of carbon dioxide released when a known mass of an alkane is burnt in a plentiful supply of air. Pupils will then need to complete a set of questions to practice this maths skill, the answers to these questions are provided in the PowerPoint so students can self-assess their work once it is complete. The final activity is a ‘Quick Check’ task for pupils to answer a set of questions which summarises what they have learnt this lesson, again the answers are provided in the PowerPoint. The plenary task will require pupils to write three sentences to sum up what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA A-Level Biology 'Enzyme Inhibition' - Dominoes Revision Activity
SWiftScienceSWiftScience

NEW AQA A-Level Biology 'Enzyme Inhibition' - Dominoes Revision Activity

(1)
This task is designed for the NEW AQA A-Level Biology, particularly the ‘Biological Molecules’ unit. For more resources designed to meet specification points for the NEW AQA A-Level specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity is a revision activity for the ‘Biological Molecules’ unit, students can either have a card each and the task can be completed as a card loop activity with the whole class. Alternatively, students could work in pairs and be given a set of the shuffled cards, they will then need to arrange the cards into the correct sequence so that the sentences make sense (like dominoes tiles). When students carry out this version of the activity, I often have a prize for the students who complete the task in the fastest time! The solution for this activity is included so you can check their answers. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA A-Level Biology 'Energy & ATP' - Dominoes Revision Activity
SWiftScienceSWiftScience

NEW AQA A-Level Biology 'Energy & ATP' - Dominoes Revision Activity

(1)
This task is designed for the NEW AQA A-Level Biology, particularly the ‘Biological Molecules’ unit. For more resources designed to meet specification points for the NEW AQA A-Level specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity is a revision activity for the ‘Biological Molecules’ unit, students can either have a card each and the task can be completed as a card loop activity with the whole class. Alternatively, students could work in pairs and be given a set of the shuffled cards, they will then need to arrange the cards into the correct sequence so that the sentences make sense (like dominoes tiles). When students carry out this version of the activity, I often have a prize for the students who complete the task in the fastest time! The solution for this activity is included so you can check their answers. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Growing Bacteria HT
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Growing Bacteria HT

(1)
This lesson is designed for the NEW AQA Biology GCSE, particularly for the higher tier for the 'Infection & Response ' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by students being introduced to how bacteria are grown and then students will watch a video on the growth of bacteria, they will need to answer questions and then will assess their work using the answers provided. Using the information learnt from the video pupils will then need to fill out a method sheet to describe how you safely grow microorganisms on agar plates. Pupils will then complete an exam-style question on what they have learnt so far as a mid-plenary and check their work. (Optional practical activity: Instructions are given for pupils to now complete the practical to start growing cultures of bacteria on agar plates.) The last half of the lesson will focus on mathematical skills related to working out the number of bacteria in a population. Pupils will watch a video to help them answer questions and then will need to complete questions by themselves, all answers are provided. The plenary task is for pupils to summarise what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Specification - Drug Trials
SWiftScienceSWiftScience

NEW AQA GCSE Specification - Drug Trials

(1)
This is a resource for the NEW AQA GCSE Biology 'Infection & Response' unit. Please find further resources designed to meet specification points for the NEW AQA Biology, Chemistry and Physics specifications at: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly consider some traditional medicines such as digitalis for dropsy, willow trees for aspirin and penicillin mould. Pupils then consider the time and money taken to conduct a drug trial, as well as the stages that are involved. Pupils will watch a video to determine the definition of a placebo and a double-blind trial, pupils should also use the video to identify how clinical scientists maintain a fair test during a clinical trial. The next part of the lesson pupils will be introduced to what happens during the pre-clinical trial phase and the three stages of the clinical trial phase. Once students have learnt this they will need to match the key words to the definitions. They will also be given a set of 6 statements which they need to write in order, as a flow diagram, in their books to represent the stages of the drug trialling process. Pupils can then self-assess their work. There is a 6-mark question on what they have learnt this lesson. To really test pupils' knowledge they should try and complete this in the back of their books, perhaps giving them a set of key words as prompts. For a less able class, they should be able to use their notes from the lesson. Pupils can peer-assess their work using the marking criteria on the PowerPoint slide. All of the resources can be found on the PowerPoint slide, there is also extra resources at the end which could be used in an extra lesson or as a homework activity. Other lessons from the 'Infection and Response' unit can be found in my TES shop :)
NEW (2016) AQA AS Biology – Gas Exchange in Plants & Limiting Water Loss
SWiftScienceSWiftScience

NEW (2016) AQA AS Biology – Gas Exchange in Plants & Limiting Water Loss

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson in the gas exchange in the leaf of a plant and limiting water loss begins with a starter discussion to remind students of the tissues found in leaves and the tracheal system in insects. Students will then be asked to think about the relationship between plant an animal cells and respiration of the two respectively. They should also consider when photosynthesis is taking place, and when it is not. The first task of this lesson is a diagram worksheet to label the structures of a leaf cell. Answers are on the following slide for self-assessment, followed by a light micrograph of leaf structure. The next task is to consider leaf adaptations for photosynthesis and identify the purpose of the adaptation (to absorb light, for gas exchange, reduce water loss, or transport). Answers follow for self-assessment. Students are then introduced to the stomata. They should make notes on the structure when the guard cells are swollen or shrunken. The next task is to answer three summary questions, sample answers are available on the following slide for self-assessment. The problem for all terrestrial organisms is water evaporation from the surface of their bodies. Students are asked to remember the various ways in which insects limit water loss before they are introduced to plant adaptations. Xerophytes are introduced as an example, including cacti and marram grass. Students will then complete a table using information cards about xerophytic adaptation, and four summary questions. Answers for both follow, for self-assessment. The final task is to complete an exam style question to consolidate their learning and self-assess to the sample mark scheme. The plenary is to write three sentences to summarise what they have learnt this lesson! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on Monoclonal Antibodies and their uses begins with a review of antibodies, plasma b-cells and memory b-cells. Students should also describe the humoral immune response to a pathogen. Students are then introduced to monoclonal antibodies through description on the slides and a short video. They should take notes and be prepared to fill in a diagram using the statements on the slide. A complete diagram is on the following slide for self-assessment. The next slides introduce the use of monoclonal antibodies, and then explain how they may be used to target cancer cells, test for pregnancy, and create medical diagnoses. Students will then watch another video which explains pregnancy tests. They will answer a few questions while watching and may self-assess to the answers on the next slide. Another included task asks students to complete a table explaining how monoclonal antibodies are used in various methods, by using information cards posted throughout the room. Using this information students will think > pair > share to discuss ethical issues regarding the production of monoclonal antibodies. They will watch three short vidoes to inform their discussion and should include risks, benefits, and impacts on both the individual and society in their answers. Some sample discussion points are available in the notes below the slide. To consolidate, students will be given a mixture of information cards to sort into a table of advantages and disadvantages of monoclonal antibodies. The plenary task is to create a three-question quiz to test their peers on today’s lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Reactions with Metals
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Reactions with Metals

(1)
This homework activity is designed for the KS3 Science Course, specifically Year 8 B2.1 Module on ‘Reactions with Metals’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Molecules & Matter
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Molecules & Matter

8 Resources
This bundle of resources contains 7 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Molecules & Matter’ unit for the NEW AQA Physics Specification. Lessons include: Density of Materials States of Matter Changes of State Internal Energy Specific Latent Heat Gas Pressure & Temperature Gas Pressure & Volume The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.