Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1214k+Views

2020k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Homeostasis, Excretion, Neuronal and Hormonal communication (OCR A-level Biology A)
GJHeducationGJHeducation

Homeostasis, Excretion, Neuronal and Hormonal communication (OCR A-level Biology A)

20 Resources
This bundle of 20 lessons covers the majority of the content that’s included in modules 5.1.1 - 5.1.4 of the OCR A-level Biology A specification. All of the lessons are highly detailed and have been planned at length to ensure that they are filled with a wide range of tasks to engage and motivate the students whilst checking on their understanding. The following specification points are covered by the lessons in this bundle: 5.1.1: Communication and homeostasis The communication between cells by cell signalling The principle of homeostasis The physiological and behavioural responses involved in temperature control in endotherms and ectotherms 5.1.2: Excretion as an example of homeostatic control The functions of the mammalian liver The gross structure and histology of the kidney The processes of ultrafiltration and selective reabsorption The control of the water potential of the blood The effects of kidney failure and its potential treatments 5.1.3: Neuronal communication The roles of mammalian sensory receptors in converting stimuli into nerve impulses The structure and functions of sensory, relay and motor neurones The generation and transmission of nerve impulses in mammals The structures and roles of synapses in transmission 5.1.4: Hormonal communication Endocrine communication by hormones The structure and functions of the adrenal glands The structure of the pancreas The regulation of blood glucose concentration The difference between diabetes mellitus type I and II The potential treatments for diabetes mellitus It is estimated that it will take in excess of 2 months of allocated A-level teaching time to cover the detail included in these lessons If you would like to sample the quality of the lessons in this bundle, then download the following lessons as they have been shared for free: The principles of homeostasis Temperature control in ectotherms The functions of the liver The structure of the kidney The generation and transmission of nerve impulses Endocrine communication
Movement of the body (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Movement of the body (Edexcel Int. A-level Biology)

(0)
This lesson describes how an interaction of muscles, tendons, the skeleton and ligaments is needed for movement of the human body. The PowerPoint and accompanying resources have been designed to cover point 7.9 of the Edexcel International A-level Biology specification and also includes descriptions of antagonistic muscle pairs, extensors and flexors. At the start of the lesson, the prep room skeleton is used as the example to show that bones without muscles are bones that are unable to move (unaided). Moving forwards, the students will learn that skeletal muscles are attached to bones by bundles of collagen fibres known as tendons and as they covered the relationship between the structure and function of collagen in topic 2, a task is used that challenges their recall of these details. This will allow them to recognise that the ability of this fibrous protein to withstand tension is important for the transmission of the force from the muscle to pull on the moveable bone. A series of quick quiz competitions introduce the key terms of flexion and antagonistic and then an exam-style question challenges them to recognise the structures involved in extension at the elbow. The remainder of the lesson focuses on the role of ligaments and one final example of extension at the knee joint will demonstrate how the interaction of all of the structures met over the course of the lesson is needed for movement
Structures involved in MOVEMENT (Edexcel A-level Biology A)
GJHeducationGJHeducation

Structures involved in MOVEMENT (Edexcel A-level Biology A)

(0)
This lesson describes how muscles, tendons, the skeleton and ligaments interact to enable movement. The PowerPoint and accompanying resources have been designed to cover point 7.1 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and also includes descriptions of antagonistic muscle pairs, extensors and flexors. At the start of the lesson, the prep room skeleton is used as the example to show that bones without muscles are bones that are unable to move (unaided). Moving forwards, the students will learn that skeletal muscles are attached to bones by bundles of collagen fibres known as tendons and as they covered the relationship between the structure and function of collagen in topic 2, a task is used that challenges their recall of these details. This will allow them to recognise that the ability of this fibrous protein to withstand tension is important for the transmission of the force from the muscle to pull on the moveable bone. A series of quick quiz competitions introduce the key terms of flexion and antagonistic and then an exam-style question challenges them to recognise the structures involved in extension at the elbow. The remainder of the lesson focuses on the role of ligaments and one final example of extension at the knee joint will demonstrate how the interaction of all of the structures met over the course of the lesson is needed for movement
Module 5.1.1: Communication and homeostasis (OCR A-level Biology A)
GJHeducationGJHeducation

Module 5.1.1: Communication and homeostasis (OCR A-level Biology A)

4 Resources
This bundle of 4 lessons covers the content of module 5.1.1 of the OCR A-level Biology A specification, titled communication and homeostasis. As this module tends to be one of the first to be taught in the second year of the course, it’s extremely important that links are made to upcoming topics as well as challenging the students on their prior knowledge of modules 2 - 4. This is achieved through a wide range of tasks, that include exam-style questions, differentiated tasks and guided discussion periods. Quick quiz competitions are also used to introduce key terms and values in a fun and memorable way. The following specification points are covered by the 4 lesson PowerPoints and accompanying resources included in this bundle: The communication between cells by cell signalling The principles of homeostasis The differences between negative and positive feedback The physiological and behavioural responses involved in temperature control in endotherms and ectotherms As detailed above, these lessons have been specifically planned to tie in with the other parts of module 5, including neuronal communication, hormonal communication and animal and plant responses. If you would like to sample the quality of the lessons in this bundle, then download the principles of homeostasis and temperature control in ectotherms lessons as these have been uploaded for free
Temperature control in endotherms (OCR A-level Biology)
GJHeducationGJHeducation

Temperature control in endotherms (OCR A-level Biology)

(0)
This is a highly engaging and detailed lesson which looks at the physiological and behavioural responses involved in temperature control in endotherms and therefore covers specification point 5.1.1 (d) of the OCR A-level Biology A specification. A wide range of activities have been written into the PowerPoint and accompanying worksheets so that students remain motivated throughout and take a genuine interest in the content. Understanding checks allow the students to assess their progress whilst the prior knowledge checks on topics such as enzymes and denaturation demonstrate the importance of being able to make connections and links between topics from across the specification. In addition to these checks, quiz competitions like HAVE an EFFECT which is shown in the cover image are used to introduce key terms and values in a fun and memorable way. The lesson begins by introducing the key term, endotherm, and challenging students to use their prior knowledge and understanding of terminology to suggest what this reveals about an organism. Moving forwards, students will learn how the heat generated by metabolic reactions is used as a source of internal heat. The main part of the lesson focuses on thermoregulation in humans (mammals) and time is taken to focus on the key components, namely the sensory receptors, the thermoregulatory centre in the hypothalamus and the responses brought about by the skin. The important details of why the transfer of heat energy between the body and the environment actually leads to a decrease in temperature are explored and discussed at length to ensure understanding is complete. Students are challenged to write a detailed description of how the body detects and responds to a fall in body temperature and this task is differentiated for those students who need some extra assistance. The peripheral thermoreceptors are introduced and this leads into the final section of the lesson that considers behavioural responses in humans and other animals. This lesson has been designed for A-level students studying the OCR A-level Biology A course
Cell signalling (OCR A-level Biology A)
GJHeducationGJHeducation

Cell signalling (OCR A-level Biology A)

(1)
This lesson describes how communication occurs between cells by cell signalling. The PowerPoint and accompanying resource have been designed to cover point 5.1.1 (b) of the OCR A-level Biology A specification and focuses on the use of the nervous system for communication between the CNS and effectors and the release of hormones to bring about responses. As this is one of the first lessons to be delivered in module 5, this lesson has been specifically planned to prepare students for the upcoming topics of neuronal and hormonal communication. Students begin by learning that cell signalling governs the basic activities of cells and coordinates multiple cell actions. Moving forwards, the next part of the lesson focuses on the nervous system and students will learn that an electrical impulse will be conducted on a somatic or an autonomic motor neurone depending upon the type of muscle to be stimulated. This provides some introductory information for modules 5.1.3 and 5.1.5. The remainder of the lesson describes how the hormones that are secreted by the cells of endocrine glands allow communication with target cells and the different actions of peptide and steroid hormones is considered.
Homeostasis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Homeostasis (Edexcel A-level Biology B)

(0)
This lesson describes the importance of homeostasis using negative feedback control and also describes the meaning of positive feedback. The PowerPoint and accompanying resources have been designed to the content with point 9.1 of the Edexcel A-level Biology B specification and explains how this feedback control maintains systems within narrow limits but has also been planned to provide important details for upcoming topics such as osmoregulation, thermoregulation and the depolarisation of a neurone. The normal ranges for blood glucose concentration, blood pH and body temperature are introduced at the start of the lesson to allow students to recognise that these aspects have to be maintained within narrow limits. A series of exam-style questions then challenge their recall of knowledge from topics 1-8 to explain why it’s important that each of these aspects is maintained within these limits. The students were introduced to homeostasis at GCSE, so this process is revisited and discussed, to ensure that students are able to recall that this is the maintenance of a state of dynamic equilibrium. A quick quiz competition is used to reveal negative feedback as a key term and students will learn how this form of control reverses the original change and biological examples are used to emphasise the importance of this system for restoring levels to the limits (and the optimum). The remainder of the lesson explains how positive feedback differs from negative feedback as it increases the original change and the role of oxytocin in birth and the movement of sodium ions into a neurone are used to exemplify the action of this control system.
Positive & negative feedback (Edexcel A-level Biology A)
GJHeducationGJHeducation

Positive & negative feedback (Edexcel A-level Biology A)

(0)
This lesson explains how negative feedback control maintains systems within narrow limits and uses biological examples to describe the meaning of positive feedback. The PowerPoint and accompanying resources have been designed to cover points 7.11 (i) and (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but have been planned to provide important details for upcoming topics such as the importance of homeostasis during exercise and the depolarisation of a neurone. The normal ranges for blood glucose concentration, blood pH and body temperature are introduced at the start of the lesson to allow students to recognise that these aspects have to be maintained within narrow limits. A series of exam-style questions then challenge their recall of knowledge from topics 1 - 6 as well as earlier in topic 7 to explain why it’s important that each of these aspects is maintained within these limits. The students were introduced to homeostasis at GCSE, so this process is revisited and discussed, so that students are prepared for an upcoming lesson on exercise, as well as for the next part of the lesson on negative feedback control. Students will learn how this form of control reverses the original change and biological examples are used to emphasise the importance of this system for restoring levels to the limits (and the optimum). The remainder of the lesson explains how positive feedback differs from negative feedback as it increases the original change and the role of oxytocin in birth and the movement of sodium ions into a neurone are used to exemplify the action of this control system.
Negative & positive feedback (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Negative & positive feedback (Edexcel Int. A-level Biology)

(0)
This lesson describes the meaning of positive feedback and explains how negative feedback control is involved in maintaining systems within narrow limits. The PowerPoint and accompanying resources have been designed to cover points 7.16 (i) and (ii) of the Edexcel International A-level Biology specification but also provide introductory details for upcoming topics such as the importance of homeostasis during exercise and the depolarisation of a neurone. The normal ranges for blood glucose concentration, blood pH and body temperature are introduced at the start of the lesson to allow students to recognise that these aspects have to be maintained within narrow limits. A series of exam-style questions then challenge their recall of knowledge from topics 1 - 6 as they have to explain why it’s important that each of these aspects is maintained within these limits. The students were introduced to homeostasis at GCSE, so this process is revisited and discussed, so that students are prepared for an upcoming lesson on exercise, as well as for the next part of the lesson on negative feedback control. Students will learn how this form of control reverses the original change and biological examples are used to emphasise the importance of this system for restoring levels to the limits (and the optimum). The remainder of the lesson explains how positive feedback differs from negative feedback as it increases the original change and the role of oxytocin in birth and the movement of sodium ions into a neurone are used to exemplify the action of this control system.
The role of adrenaline (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The role of adrenaline (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the roles of adrenaline in the fight or flight response. The engaging PowerPoint and accompanying resources have been designed to cover point 7.14 of the Edexcel International A-level Biology specification At the start of the lesson, the students have to use the knowledge acquired in the most recent lessons on the function of the heart to reveal the key term medulla and this leads into the description of the structure of the adrenal glands in terms of this inner region. The main part of the lesson focuses on the range of physiological responses of the organs to the release of adrenaline. Beginning with glycogenolysis, the need for adrenaline to bind to adrenergic receptors is described, including the activation of cyclic AMP. A quiz competition is used to introduce other responses including lipolysis, vasodilation, bronchodilation and an increase in stroke volume. Links to previous topics are made throughout the lesson and students are challenged on their knowledge of heart structure, triglycerides and polysaccharides.
Adrenal glands (OCR A-level Biology A)
GJHeducationGJHeducation

Adrenal glands (OCR A-level Biology A)

(0)
This lesson describes the structure and functions of the adrenal glands, and includes the hormones secreted by the cortex and the medulla. The detailed PowerPoint and accompanying resources have been designed to cover point 5.1.4 (b) of the OCR A-level Biology A specification This lesson has been planned to closely tie in with the previous lesson on endocrine communication, and specifically the modes of action of peptide and steroid hormones. At the start of the lesson, the students have to use the knowledge acquired in this last lesson to reveal the key term cortex and this leads into the description of the structure of the adrenal glands in terms of the outer region and the inner region known as the medulla. The main part of the lesson focuses on the range of physiological responses of the organs to the release of adrenaline. Beginning with glycogenolysis, the need for adrenaline to bind to adrenergic receptors is described including the activation of cyclic AMP. A quiz competition is used to introduce other responses including lipolysis, vasodilation, bronchodilation and an increase in stroke volume. Links to previous topics are made throughout the lesson and students are challenged on their knowledge of heart structure and polysaccharides. The final part of the lesson introduces the three zones of the adrenal cortex and the steroid hormones that they produce along with their functions. Once again, a series of exam-style questions are used to challenge their ability to apply their understanding to an unfamiliar situation and to make biological links and the mark schemes are embedded in the PowerPoint.
Pathogens and the body's barriers to infection (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Pathogens and the body's barriers to infection (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the major routes that pathogens take when entering the body and the body’s barriers to this infection. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 6.7 (i) & (ii) of the Edexcel International A-level Biology specification and includes descriptions of the following barriers: skin the blood clotting process mucous membranes stomach acid vaginal acid and flora skin and gut flora wax in the ear canal There are clear links to topics 1, 2 and 3 in each of these barriers, so these are considered and discussed during each of the descriptions. For example, the presence of keratin in the cytoplasm of the skin cells allows the student knowledge of the properties of this fibrous protein to be checked. Other topics that are revisited during this lesson include protein structure, key terminology and the epithelium that lines the different parts of the airways. All of the exam-style questions have mark schemes that are embedded into the PowerPoint and a number of the tasks have been differentiated to allow students of differing abilities to access the work.
Barriers against pathogens (Edexcel A-level Biology A)
GJHeducationGJHeducation

Barriers against pathogens (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the role of barriers in protecting the body from infection by pathogens when entering the body by the major routes. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 6.11 (i) & (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and describe the following barriers: skin key steps of the blood clotting process mucous membranes stomach acid vaginal and skin flora There are clear links to topics 1, 2 and 3 in each of these barriers, so time is taken to consider these during the descriptions. For example, the presence of keratin in the cytoplasm of the skin cells allows the student knowledge of the properties of this fibrous protein to be checked. Other topics that are revisited during this lesson include blood clotting, protein structure, key terminology and the epithelium that lines the different parts of the airways. All of the exam-style questions and tasks have mark schemes that are embedded in the PowerPoint and a number of them have been differentiated to allow students of differing abilities to access the work.
Topic 5.2: The human nervous system (AQA GCSE Biology)
GJHeducationGJHeducation

Topic 5.2: The human nervous system (AQA GCSE Biology)

4 Resources
These 4 lessons cover the content of topic 5.2 of the AQA GCSE Biology specification - The human nervous system. Each of the lesson PowerPoints and their accompanying resources have been designed to contain a wide range of tasks which will engage and motivate the students whilst covering the GCSE content. There are also lots of understanding checks so students can check on their current understanding as well as prior knowledge checks where they are challenged to make links to previously-covered topics.
Topic 5: Homeostasis and response (AQA GCSE Biology)
GJHeducationGJHeducation

Topic 5: Homeostasis and response (AQA GCSE Biology)

12 Resources
This bundle contains 12 lesson PowerPoints and their accompanying resources, and all of them have been planned at length to cover the GCSE content of topic 5 of the AQA GCSE Biology specification, whilst engaging and motivating the students with a wide range of tasks. These tasks include exam-style questions with answers included in the PowerPoint, guided discussion points and quick quiz rounds which are used to introduce key terms and values in a fun and memorable way whilst instilling some competition The following Homeostasis and response specification points are covered by the lessons in this bundle: Homeostasis* Structure and function of the human nervous system The brain The eye Control of body temperature Human endocrine system Control of blood glucose concentration Maintaining water and nitrogen balance in the body* Hormones in human reproduction Contraception* The use of hormones to treat infertility Negative feedback If you would like to sample the quality of lessons in this bundle, then download the lessons indicated with an asterisk as they have been uploaded for free
Cytoskeleton (OCR A-level Biology A)
GJHeducationGJHeducation

Cytoskeleton (OCR A-level Biology A)

(1)
This lesson describes the importance of the cytoskeleton, and focuses on the role of these proteins in the transport within cells and cell movement. The PowerPoint and accompanying resource have been designed to cover point 2.1.1 (j) of the OCR A-level Biology A specification and has been specifically designed to tie in with The previous lesson covered the ultrastructure of eukaryotic cells and the function of the different cellular components and this lesson has been planned to build on that knowledge to show how the cytoskeleton allows for the movement of these organelles from one part of the cell to another. In particular, the students will recognise how the dragging movement of the motor proteins along the microtubule track is important for the proteins produced at the RER to move to the Golgi before the vesicles are then moved to the membrane for exocytosis. In this way, this lesson also covers specification point 2.1.1 (i). Other examples such as the movement of the synaptic vesicles and the contraction of the spindle fibres during anaphase are used to consolidate understanding further. The cilia and the flagellum are also described and links are made to related topics such as the primary non-specific defences against pathogens. In order to engage and motivate the students during the 7 lessons in this module, a running quiz competition has been written into each of the lessons and 3 rounds are incorporated into this lesson. A quiz scoresheet to keep track of the points is included in this resource.
Module 4.1.1: Communicable diseases, disease prevention and the immune system (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4.1.1: Communicable diseases, disease prevention and the immune system (OCR A-level Biology A)

8 Resources
This lesson bundle contains 8 detailed lesson PowerPoints and their accompanying resources and all of them have been planned at length to engage and motivate the students whilst covering the biological content of module 4.1.1 of the OCR A-level Biology A specification. The wide range of tasks which are contained with each of these lessons cover the following specification points: The different types of pathogen that can cause communicable diseases in plants and animals The means of transmission of animal and plant communicable pathogens The primary non-specific defences against pathogens in animals The structure and mode of action of phagocytes The structure, different roles and modes of action of B and T lymphocytes in the specific immune response The primary and secondary immune responses The structure and general functions of antibodies An outline of the action of opsonins, agglutinins and anti-toxins The difference between active and passive immunity, and between natural and artificial immunity Autoimmune diseases The principles of vaccination and the role of vaccination programmes in the prevention of epidemics If you would like to sample the quality of the lessons in this bundle, then download the “Transmission of animal and plant pathogens” and “immunity & vaccinations” lessons as these have been uploaded for free
Primary non-specific defences (OCR A-level Biology)
GJHeducationGJHeducation

Primary non-specific defences (OCR A-level Biology)

(0)
This fully-resourced lesson describes the primary non-specific defences against pathogens in animals. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.1.1 (d) of the OCR A-level Biology A specification and describes the following defences: skin key steps of the blood clotting process release of histamine in the inflammatory response expulsive reflexes mucous membranes There are clear links to topics in modules 2 and 3 in each of these defences so time is taken to consider these during the descriptions. For example, the presence of keratin in the cytoplasm of the skin cells allows the student knowledge of the properties of this fibrous protein to be checked. Other topics that are revisited during this lesson include protein structure, formation of tissue fluid, key terminology and roles of inorganic ions in biological processes. There is also a section of the lesson which refers to the genetics behind haemophilia and students are challenged to apply knowledge to an unfamiliar situation. This will prepare them for this topic when covered in module 6.1.2 All of the exam-style questions and tasks have mark schemes that are embedded in the PowerPoint and a number of them have been differentiated to allow students of differing abilities to access the work.
Preparing slides & staining (OCR A-level Biology)
GJHeducationGJHeducation

Preparing slides & staining (OCR A-level Biology)

(1)
This lesson describes how to prepare and examine microscope slides and the use of staining in light microscopy. The PowerPoint and accompanying resources have been designed to cover points 2.1.1 (b & c) of the OCR A-level Biology A specification and describe how the eyepiece graticule and stage micrometer are used to measure the size of an object with a light microscope and the use of eosin and methylene blue. The main task of this lesson involves a step by step guide which walks students through the methodology and the use of the scale on the stage micrometer to identify the size of the divisions of the eyepiece graticule and this will need them to convert between units. Moving forwards, the students are challenged to apply this method to a series of exam-style questions and the mark scheme is displayed on the PowerPoint so that they can assess their understanding. In the last lesson, they were briefly introduced to the idea that some specimens need to be stained as light passes completely through transparent samples and the remainder of the lesson builds on this knowledge. Students will learn that cell populations, structures within cells and biological tissues can be distinguished using stains and a series of questions will challenge them to make links to biological molecules, organelles and infections. Links are also made to the upcoming topic of epithelial tissue in the respiratory system. This lesson has been specifically written to tie in with the previous lesson on light and electron microscopes and 2 rounds of the sub-module quiz competition are found in this lesson.
Cell structure & biological molecules (OCR A-level Biology A)
GJHeducationGJHeducation

Cell structure & biological molecules (OCR A-level Biology A)

19 Resources
It’s fair to say that cell structure and biological molecules are two of the most important topics in the OCR A-level Biology A course and all 19 lessons that are included in this bundle have been planned at length to cover the module 2.1.1 & 2.1.2 specification points in the detail required at this level. The lesson PowerPoints and their accompanying resources contain a wide range of tasks as well as regular checks to allow students to assess their understanding of the current content as well as prior knowledge checks to emphasise the importance of making links to topics in other modules. The following specification points in modules 2.1.1 (cell structure) and 2.1.2 (biological molecules) are covered by the lessons in this bundle: 2.1.1 The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms The use of the eyepiece graticule and stage micrometer The use of staining in light microscopy The use and manipulation of the magnification formula The difference between magnification and resolution The ultrastructure of eukaryotic cells and the functions of the different cellular components The interrelationship between the organelles involved in the production and secretion of proteins The importance of the cytoskeleton The similarities and differences between the ultrastructure of prokaryotic and eukaryotic cells 2.1.2 The properties and roles of water in living organisms The concept of monomers and polymers and the importance of condensation and hydrolysis reactions The chemical elements that make up biological molecules The structure and properties of glucose and ribose The synthesis and breakdown of a disaccharide and a polysaccharide by the formation and breakage of glycosidic bonds The structure of starch, glycogen and cellulose molecules The relationship between the structure, function and roles of triglycerides, phospholipids and cholesterol in living organisms The general structure of an amino acid The synthesis and breakdown of dipeptides and polypeptides The levels of protein structure The structure and function of globular proteins The properties and functions of fibrous proteins The key inorganic ions involved in biological processes The chemical tests for proteins, reducing and non-reducing sugars, starch and lipids If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as they have been uploaded for free: The use of microscopy The importance of the cytoskeleton Properties and roles of water Glucose & ribose General structure of an amino acid Dipeptides, polypeptides and protein structure