Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1122k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Factors affecting photosynthesis (OCR A-level Biology)
GJHeducationGJHeducation

Factors affecting photosynthesis (OCR A-level Biology)

(1)
This fully-resourced lesson describes how light intensity, carbon dioxide concentration and temperature limit the rate of photosynthesis. The PowerPoint and accompanying resources have been designed to cover point 5.2.1 (g) (i) of the OCR A-level Biology A specification and also includes a brief consideration of water stress. The lesson has been specifically written to tie in with the three previous lessons in this module which covered the structure of the chloroplast, the light-dependent and light-independent stages and the uses of TP. Exam-style questions are included throughout the lesson and these require the students to explain why light intensity is important for both reactions as well as challenging them on their ability to describe how the relative concentrations of GP, TP and RuBP would change as carbon dioxide concentration decreases. There are also links to previous topics such as enzymes when they are asked to explain why an increase in temperature above the optimum will limit the rate of photosynthesis. Step by step guides are included to support them to form some of the answers and mark schemes are always displayed so that they can quickly assess their understanding and address any misconceptions.
The uses of triose phosphate (OCR A-level Biology)
GJHeducationGJHeducation

The uses of triose phosphate (OCR A-level Biology)

(0)
This fully-resourced lesson describes how TP is a starting material for the synthesis of carbohydrates, lipids and amino acids as well as being recycled to regenerate RuBP in the Calvin cycle. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.2.1 (f) of the OCR A-level Biology A specification concerning the uses of TP but as the lesson makes continual references to biological molecules, it can act as a revision tool for the content of module 2.1.2. The previous lesson covered the light-independent stage and this lesson builds on that understanding to demonstrate how the product of the Calvin cycle, triose phosphate, is used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the TP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from TP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this module on the structure of the chloroplast and the light-dependent and light-independent stages of photosynthesis.
Topic 5.1: Photosynthesis (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5.1: Photosynthesis (AQA A-level Biology)

4 Resources
This bundle of detailed lesson PowerPoints and accompanying resources have been designed to cover the content of topic 5.1 (Photosynthesis) in the AQA A-level Biology specification. This cellular reaction can prove difficult for the students to understand, so extra planning has gone into these 4 lessons to ensure that the key details of the reactions are embedded and understanding is constantly checked through a variety of activities. All of the exam-style questions which are used in these current understanding and prior knowledge checks have mark schemes that are included in the PowerPoint to allow the students to assess their work. If you would like to sample the quality of these lessons, download the chloroplast structure lesson as this has been uploaded for free.
Limiting factors of photosynthesis (AQA A-level Biology)
GJHeducationGJHeducation

Limiting factors of photosynthesis (AQA A-level Biology)

(0)
This fully-resourced lesson challenges students to identify environmental factors that limit the rate of photosynthesis. The PowerPoint and accompanying resources have been designed to cover the fourth part of point 5.1 of the AQA A-level Biology specification and focuses on light intensity, carbon dioxide concentration and temperature. The lesson has been specifically written to tie in with the three previous lessons in this topic which covered the structure of the chloroplast, the light-dependent reactions and the light-independent reactions. Exam-style questions are included throughout the lesson and these require the students to explain why light intensity is important for both reactions as well as challenging them on their ability to describe how the relative concentrations of GP, TP and RuBP would change as carbon dioxide concentration decreases. There are also links to previous topics such as enzymes when they are asked to explain why an increase in temperature above the optimum will limit the rate of photosynthesis. Step by step guides are included to support them to form some of the answers and mark schemes are always displayed so that they can quickly assess their understanding and address any misconceptions.
The mechanism of breathing (AQA A-level Biology)
GJHeducationGJHeducation

The mechanism of breathing (AQA A-level Biology)

(0)
This lesson describes the mechanism of breathing, including the roles of the ribcage, intercostal muscles and the diaphragm. The content of the engaging PowerPoint has been designed to cover the details of the fifth part of specification point 3.2 of the AQA A-level Biology specification and introduces the antagonistic interaction of the external and internal intercostal muscles. The lesson begins with a focus on the diaphragm and students will discover that this sheet of muscle is found on the floor of the thoracic cavity. Whilst planning the lesson, it was deemed important to introduce this region of the body at an early stage because the best descriptions will regularly reference the changes seen in this cavity. As the mechanism of inhalation is a cascade of events, the details of this process are covered in a step by step format using bullet points. At each step, time is taken to discuss the key details which includes an introduction to Boyle’s law that reveals the inverse relationship between volume and pressure. It is crucial that students are able to describe how the actions of the diaphragm, external intercostal muscles and ribcage result in an increased volume of the thoracic cavity and a subsequent decrease in the pressure, which is below the pressure outside of the body. At this point, their recall of the structures of the mammalian gas exchange system is tested, to ensure that they can describe the pathway the air takes on moving into the lungs. The remainder of the lesson involves a task which challenges the students to describe exhalation and then the accessory muscles involved in forced ventilation are also considered.
Alveolar epithelium (AQA A-level Biology)
GJHeducationGJHeducation

Alveolar epithelium (AQA A-level Biology)

(0)
This concise lesson describes the essential features of the alveolar epithelium as a surface over which gas exchange takes place. The engaging PowerPoint has been designed to cover the fourth part of point 3.2 of the AQA A-level Biology specification and also includes an introduction to ventilation which is covered in the following lesson. Gas exchange at the alveoli is a topic that was covered at GCSE so this lesson has been written to challenge the recall of that knowledge and to build on it. The main focus of the lesson is the type of epithelium found lining the alveoli and students will discover that a single layer of flattened cells known as simple, squamous epithelium acts to reduce the diffusion distance. Again, students will have met this in a lesson in topic 2 on specialised cells (and tissues) so a number of prior knowledge checks are used alongside current understanding checks. The following features of the alveolar epithelium are also covered: Surface area Moist lining Production of surfactant The maintenance of a steep concentration gradient As a constant ventilation supply is critical for the maintenance of the steep concentration gradient, the final part of the lesson considers the mechanism of ventilation to prepare the students for the next lesson.
Light-independent stage of photosynthesis (OCR A-level Biology A)
GJHeducationGJHeducation

Light-independent stage of photosynthesis (OCR A-level Biology A)

(0)
This fully-resourced lesson describes the series of reactions in the light- independent stage of photosynthesis. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 5.2.1 (e) of the OCR A-level Biology A specification and detailed planning includes continual links to the previous lesson on the light-dependent stage to ensure that students recognise how the products of that stage, ATP and reduced NADP, are essential for the Calvin cycle The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and TP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RuBisCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to TP The use of the majority of the TP in the regeneration of RuBP A step-by-step guide, with discussion points where the class consider selected questions, is used to show how 6 turns of the cycle are needed to form the TP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed.
Light-dependent stage of photosynthesis (OCR A-level Biology A)
GJHeducationGJHeducation

Light-dependent stage of photosynthesis (OCR A-level Biology A)

(0)
This lesson describes the light-dependent stage of photosynthesis and focuses on the mechanisms involved in the production of ATP and reduced NADP. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 5.2.1 (d) of the OCR A-level Biology A specification and has been specifically planned to link with the previous lesson on the structure of the chloroplast and photosynthesis and to prepare the students for the next lesson on the light-independent stage. The light-dependent stage is a process which students can find difficult to understand in the necessary detail so this lesson has been planned to walk them through all of the key details. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the cytochrome proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as eukaryotic cell structures and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic photophosphorylation. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take in excess of 2.5 hours of allocated A-level teaching time to complete.
The chloroplast and photosynthesis (OCR A-level Biology A)
GJHeducationGJHeducation

The chloroplast and photosynthesis (OCR A-level Biology A)

(0)
This fully-resourced lesson describes the components of the chloroplast, focusing on the grana and stroma as the sites of photosynthesis. The engaging PowerPoint and accompanying resources have been designed to cover point 5.2.1 (b) of the OCR A-level Biology A specification and has been specifically designed to introduce students to the light-dependent and light-independent stages before they are covered in detail in upcoming lessons. Students were introduced to eukaryotic cells and their organelles structures in module 2.1.1 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled, a range of activities are used to ensure that key details are understood such as the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to TP in the Calvin cycle. Links to other topics are made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch (as originally covered in module 2.1.2)
Mechanism of ventilation (OCR A-level Biology)
GJHeducationGJHeducation

Mechanism of ventilation (OCR A-level Biology)

(0)
This lesson describes the mechanism of ventilation in mammals, including the roles of the ribcage, intercostal muscles and the diaphragm. The content of the engaging PowerPoint has been designed to cover specification point 3.1.3 (d) of the OCR A-level Biology A specification and describes the mechanism of inhalation and exhalation at rest. The lesson begins with a focus on the diaphragm and students will discover that this sheet of muscle is found on the floor of the thoracic cavity. Whilst planning the lesson, it was deemed important to introduce this region of the body at an early stage because the best descriptions will regularly reference the changes seen in this cavity. As the mechanism of inhalation is a cascade of events, the details of this process are covered in a step by step format using bullet points. At each step, time is taken to discuss the key details which includes an introduction to Boyle’s law that reveals the inverse relationship between volume and pressure. It is crucial that students are able to describe how the actions of the diaphragm, external intercostal muscles and ribcage result in an increased volume of the thoracic cavity and a subsequent decrease in the pressure, which is below the pressure outside of the body. At this point, their recall of the structures of the mammalian gas exchange system is tested, to ensure that they can describe the pathway the air takes on moving into the lungs. The remainder of the lesson involves a task which challenges the students to describe exhalation and then the accessory muscles involved in forced ventilation are also considered.
Topics 5.1 & 5.2: Respiration & photosynthesis (AQA A-level Biology)
GJHeducationGJHeducation

Topics 5.1 & 5.2: Respiration & photosynthesis (AQA A-level Biology)

11 Resources
Respiration and photosynthesis are two of the most commonly-assessed topics in the terminal A-level exams but can be the least well understood by students. These 11 lessons have been intricately planned to contain a wide range of activities that will engage the students whilst covering the key detail to try to deepen their understanding and include exam-style questions so they are prepared for these assessments. The following specification points in topics 5.1 and 5.2 of the AQA A-level Biology course are covered by these lessons: The photoionisation of chlorophyll The production of ATP and reduced NADP through the transfer of electrons and pumping of protons across the thylakoid membrane Photolysis of water to produce protons, electrons and oxygen The use of the products of the light-dependent reaction in the Calvin cycle Carbon fixation involving RUBISCO The reduction of GP to TP The regeneration of RuBP from TP The conversion of TP to organic substances The environmental factors that limit the rate of photosynthesis Respiration produces ATP Glycolysis as the first stage of aerobic and anaerobic respiration The conversion of pyruvate to ethanol or lactate using reduced NAD The key details of the Link reaction, Krebs cycle and oxidative phosphorylation The metabolic pathways of other respiratory substrates Due to the detail of these lessons, it is estimated that it will take in excess of a month of A-level lessons to cover these specification points If you would like to sample the quality of the lessons, download the chloroplast structure, anaerobic respiration and oxidative phosphorylation lessons as these have been shared for free
Light-independent reaction (AQA A-level Biology)
GJHeducationGJHeducation

Light-independent reaction (AQA A-level Biology)

(0)
This fully-resourced lesson describes the light independent reaction of photosynthesis and explains how reduced NADP is used to form a simple sugar. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 5.1 of the AQA A-level Biology specification and lengthy planning has ensured that links are continually made to the previous lesson on the light-dependent reaction so that students can understand how the products of that stage are essential for the Calvin cycle The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and TP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RuBisCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to TP The use of the majority of the TP in the regeneration of RuBP A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the TP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent stage as well as upcoming lesson on limiting factors
Light-dependent reaction of photosynthesis (AQA A-level Biology)
GJHeducationGJHeducation

Light-dependent reaction of photosynthesis (AQA A-level Biology)

(0)
This detailed lesson describes the light-dependent reaction of photosynthesis and focuses on the transfer of electrons and proton pumping. The PowerPoint and accompanying resources have been designed to cover the first part of point 5.1 of the AQA A-level Biology specification and has been planned to link with the previous lesson on the structure of the chloroplast and to prepare the students for the next lesson on the light-independent reaction. The light-dependent reaction is a topic which students tend to find difficult so this lesson has been planned to walk them through all of the key details. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the cytochrome proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as cell structure and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic fashion. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take in excess of 2.5 hours of allocated A-level teaching time to complete.
Chloroplast structure (AQA A-level Biology)
GJHeducationGJHeducation

Chloroplast structure (AQA A-level Biology)

(0)
This engaging and fully-resourced lesson describes the relationship between the structure of the chloroplast and its role as the site of photosynthesis. The PowerPoint and accompanying resources have been designed to prepare the students for topic 5.1 (Photosynthesis) of the AQA A-level Biology course Students were introduced to the cell structures in eukaryotic cells in topic 2.1 so this lesson has been written to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled, a range of activities are used to ensure that key details are understood such as the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to TP in the Calvin cycle. This lesson has been specifically written to prepare students for the upcoming lessons on the light-dependent and light-independent reactions
ATP as the energy currency (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

ATP as the energy currency (Pearson Edexcel A-level Biology A)

(0)
This lesson describes how the hydrolysis of ATP supplies energy for biological processes and how the phosphorylation of ADP requires energy. The PowerPoint has been designed to cover point 5.6 of the Pearson Edexcel A-level Biology A specification and also describes how ATP is made in the light-dependent stage of photosynthesis and is needed in the light-independent stage. The start of the lesson focuses on the structure of this energy currency and challenges the students to use their knowledge of nucleotides and specifically RNA nucleotides to recognise the components of ATP. As a result, they will learn that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of skeletal muscle contraction are used as this is covered in greater detail in topic 7. The final part of the lesson considers how ATP is formed when ADP is phosphorylated and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively, so that it ties in with the upcoming lessons in topic 5 and 7.
Topic 5: Energy for biological processes (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 5: Energy for biological processes (Edexcel A-level Biology B)

10 Resources
Respiration and photosynthesis are two of the most important biological processes, which can be poorly understood by students but unsurprisingly are commonly assessed in the terminal exams. These 8 lessons have been intricately planned so that they contain a wide range of activities that will engage the students whilst covering the key detail to try to deepen their understanding and include exam-style questions so they are prepared for the assessments. The following specification points in topic 5 of the Edexcel A-level Biology B course are covered by these 9 fully-resourced lessons: Cellular respiration yields ATP The different stages of aerobic respiration The conversion of glucose to pyruvate during glycolysis The mitochondrial matrix as the site of the Link reaction and Krebs cycle The production of carbon dioxide, reduced NAD and ATP in the Krebs cycle Oxidative phosphorylation The yield of ATP from anaerobic respiration The production of lactate in mammalian muscles Ethanol formation in plants The structure of the chloroplasts The role of thylakoid membranes in the light-dependent stage The process of cyclic and non-cyclic photophosphorylation The use of reduced NADP and ATP in the Calvin cycle Understand how GALP is used as a raw material in the production of monosaccharides, amino acids and other molecules Factors that limit photosynthesis including carbon dioxide, light intensity and temperature Due to the detail of these lessons, it is estimated that it will take in excess of a month of A-level lessons to cover these lessons If you would like to sample the quality of the lessons, download the link reaction, Krebs cycle and light-independent stage lessons as these have been shared for free
Light-dependent stage (Edexcel A-level Biology B)
GJHeducationGJHeducation

Light-dependent stage (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the light-dependent stage, including the production of ATP by cyclic and non-cyclic photophosphorylation. The detailed PowerPoint and accompanying resources have been designed to cover specification points 5.7 (ii) & (iii) of the Edexcel A-level Biology course and has been planned to link with the previous lesson on the structure of the chloroplast and to prepare for the next lesson on the light-independent stage. This is a topic which students tend to find difficult so this lesson has been intricately planned to walk them through each of the key steps of the light-dependent stage. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as cell structure and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic fashion. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take in excess of 2.5 hours of allocated A-level teaching time to complete.
Structure of chloroplasts (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of chloroplasts (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the relationship between the structure of the chloroplast and its role as the site of photosynthesis. The engaging PowerPoint and accompanying resources have been designed to cover specification point 5.7 (i) of the Edexcel A-level Biology B course. Students were introduced to the ultrastructure of eukaryotic cells in topic 2 so this lesson has been written to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled, a range of activities are used to ensure that key details are understood such as the role of the thylakoid membranes in the light-dependent stage and the importance of ATP and reduced NADP for the Calvin cycle. This lesson has been specifically written to prepare students for the upcoming lessons on the light-dependent stage and light-independent stage
Light-independent stage (Edexcel A-level Biology B)
GJHeducationGJHeducation

Light-independent stage (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the reactions of the light independent stage of photosynthesis that takes place in the chloroplast stroma. The detailed PowerPoint and accompanying resources have been designed to cover points 5.7 (iv, v & vi) of the Edexcel A-level Biology B specification and lengthy planning has ensured that links are continually made to the previous lesson on the light-dependent stage so that students can understand how the products of that stage are essential for the Calvin cycle The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and GALP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RuBisCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to GALP The use of the majority of the GALP in the regeneration of RuBP A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the GALP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent stage as well as upcoming lessons on the synthesis of organic molecules from GALP and limiting factors
Anaerobic respiration (Edexcel A-level Biology B)
GJHeducationGJHeducation

Anaerobic respiration (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how respiration in the absence of oxygen produces a limited yield of ATP and results in lactate or ethanol formation. The engaging PowerPoint and accompanying differentiated resources have been designed to cover all of the specification points under point 5.5 of the Edexcel A-level Biology B specification and explains how pyruvate must be converted to lactate or ethanol using the hydrogen atoms released from reduced NAD to reoxidise this coenzyme to allow glycolysis to continue. The lesson begins with a focus on the coenzyme, NAD, and students are challenged to recall details of its role in the oxidation of glycerate-3-phosphate. Students will recall that oxidative phosphorylation in aerobic respiration allows these coenzymes to be reoxidised and therefore recognise that another metabolic pathway has to operate when there is no oxygen available. Time is taken to go through the details of the lactate and ethanol fermentation pathways and students are encouraged to discuss the conversions before applying their knowledge to complete diagrams and passages about the pathways. Understanding checks in a range of forms are used to enable the students to assess their progress whilst prior knowledge checks allow them to recognise the links to earlier topics. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the stages of aerobic respiration as detailed in points 5.1 - 5.5.