A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This lesson describes the structure and function of a spinal reflex arc, including the grey and white matter of the spinal cord. The PowerPoint and accompanying resources have been designed to cover the content of point 8.3 of the Edexcel International A-level biology specification.
At the start of the lesson, the students are challenged to recognise the connections between three groups of key terms, and this acts to remind them of the sensory, motor and relay neurone, different types of muscle tissue and some reflexes. Time is taken to ensure that students understand that a spinal reflex arc is a direct neural pathway through the spinal cord and does not involve processing by the brain. Some of the content was covered at GCSE and in the first two lessons of topic 8, so this lesson has been specifically planned to challenge their recall of this content and then to build upon it, and understanding and prior knowledge checks are used throughout to allow them to assess their progress. The students will be able to recognise the different matter of the spinal cord, which is named according to the presence of myelinated or unmyelinated neurones and they will also understand how sensory neurones enter via the dorsal root and motor neurones exit via the ventral root. Moving forwards, two examples of real biological reflexes are used to increase relevance, and students will see how the knee jerk reflex is unusual as it doesn’t contain a relay neurone.
References to synapses, myelination and saltatory conduction are included in the lesson and brief details provided before these are covered in upcoming topic 8 lessons.
This lesson describes the meaning of the respiratory quotient and guides students through the calculation of values from respiration equations. The PowerPoint and accompanying resource have been planned to cover the content of points 12.1 (5 & 6) of the CIE A-level biology specification (for assessment in 2025 - 2027).
The lesson begins with a recall challenge, where the students have to demonstrate their knowledge of ATP and relative energy values to reveal the two letters, RQ. The meaning of a quotient is provided and time allocated, where they are encouraged to discuss which two respiratory values might be used, using their brief knowledge of aerobic respiration from iGCSE. The formula is provided and then a worked example used to model the calculation. The obtained value of 1.0 is explained as the RQ if metabolism consists entirely of carbohydrates. Two exam-style questions are then used to challenge the students to apply their understanding and they’ll reveal the value of 0.7 for lipids. A quick quiz round introduces the range for amino acids as 0.8 - 0.9 before a final task gets them to obtain another value and to recognise that more than one type of molecule is often metabolised.
The lesson is full of understanding and prior knowledge checks, and the answers are embedded into the PowerPoint to allow students to assess their progress.
This lesson explains how labelled DNA probes in microarrays can be used to identify active genes. The PowerPoint and accompanying resources have been designed to cover the content of point 8.20 of the Edexcel International A-level biology specification.
The lesson begins by introducing the BRCA genes, and the students will learn how faulty alleles of these two genes can increase an individual’s risk of developing breast cancer. Therefore, there is a need to be able to locate specific alleles like these, and this function is performed by DNA probes. The students are challenged to use the function of the probes to predict their structure and will understand that they are short lengths of single stranded DNA that have a base sequence complementary to the base sequence of part of the target allele. A quick quiz round is used to introduce hybridisation as a key term, to ensure that students recognise that the probe will bind if the complementary base sequence is encountered. Moving forwards, a DNA microarray is introduced to show that it’s possible to screen for multiple genes.
The remainder of the lesson considers how the DNA probes are used to screen for heritable conditions and drug responses, and real-life examples are used to increase relevance.
This lesson describes how the loop of Henle acts as a countercurrent multiplier to increase the reabsorption of water. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 2 lessons which have been designed to cover point 7.20 of the Edexcel International A-level biology specification.
The lesson begins by challenging the students to recognise that the glomerular filtrate entering the loop will only contain water, ions and urea if the kidneys are functioning properly. Time is then taken to look at the structure of the loop of Henle, focusing on the descending and ascending limbs, and their differing permeabilities. Students will be reminded that this part of the nephron is located in the renal medulla, before a step-by-step guide is used to describe how the transfer of ions, particularly sodium ions, from the ascending limb to the descending limb, creates a very negative water potential in this region of the kidney. This allows water to move out of the descending limb to the tissue fluid and then into the capillaries.
The next task has been designed to challenge the students on their knowledge of the numbers associated with biology to reveal the key term, countercurrent. They will learn that the countercurrent flow principle involves fluids flowing in opposite directions past each other and an example in bony fish is used to increase the relevance, before they understand how this multiplier works in the loop to increase water reabsorption.
The next part of the lesson challenges students to consider the bigger picture as they learn that this decreasing water potential in the medulla allows water to be reabsorbed from the filtrate in the collecting duct too.
The remainder of the lesson uses the real-world examples of the hopping mouse and kangaroo rat to check student understanding, and there are also prior knowledge checks to encourage students to make links to relevant content from earlier topics. All answers are embedded into the PowerPoint.
This is an engaging and fully-resourced revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Key concepts in Biology) of the Edexcel GCSE Biology 9-1 specification.
The specification points that are covered in this revision lesson include:
Explain how the sub-cellular structures of eukaryotic and prokaryotic cells are related to their functions
Describe how specialised cells are adapted to their function
Know that changes in microscope technology, including electron microscopy, have enabled us to see cell structures and organelles with more clarity and detail than in the past
Demonstrate an understanding of the relationship between quantitative units in relation to cells
Explain how substances are transported into and out of cells, including by diffusion, osmosis and active transport
Core Practical: Investigate osmosis in potatoes
Calculate percentage gain and loss of mass in osmosis
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “CELL, CELL, CELL” where they have to compete to quickly identify specialised cells from their descriptions whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
An engaging lesson presentation (33 slides) and associated worksheets that introduces students to classification using the taxonomic levels and teaches them how to name species using the binomial naming system. The students are told about the domain system, as developed by Carl Woese, but then the lesson focuses on showing them the seven levels that come after this. Students are challenged to understand how the levels differ from each other in terms of sharing characteristics. Time is taken to focus on the five kingdoms and links are made to other topics such as prokaryotic cells to test their previous knowledge. Moving forwards, students are shown how the genus and species are used in the binomial naming system before being given lots of opportunities to assess their understanding through questions.
This lesson has been written for GCSE students but is suitable for all age ranges
This lesson describes the structure of the mammalian liver, focusing on the blood vessels and bile canaliculi, as well as the hepatocytes. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 2 lessons which cover point 5.1.2 (b) of the OCR A-level biology A specification.
As shown on the cover image, the lesson begins with a challenge, where the students have to recognise that the liver is supplied with oxygenated blood by the hepatic artery. Three editions of the quiz “SAY WHAT YOU SEE” are used to introduce three key terms in an engaging and memorable fashion which are hepatic portal vein, sinusoids, and bile canaliculi. Following the introduction of the hepatic portal vein and sinusoids, the students will understand that the liver is supplied by two vessels and that the blood mixes in the sinusoids. Time is then taken to focus on the hepatocytes, through 3 exam-style questions that consider the type of epithelium these liver cells are found in, the microvilli on their surface and the organelles which are abundant based on function.
Moving forwards, the lesson discusses the function of the stellate cells that are found in the space of Disse, before a task challenges their recall of content from a previous lesson to reveal the name of the cells that move within the sinusoids, the Kupffer cells. Students will learn that these macrophages breakdown the haemoglobin in old erythrocytes to form bilirubin. This reminds them that liver cells produce bile and the remainder of the lesson discusses how this fluid flows along the bile canaliculi to the ductules which form the common hepatic duct.
The 2nd lesson in this 2-part series describes the functions of the mammalian liver.
An engaging lesson presentation (32 slides) and differentiated worksheets that look at the meaning of the substances termed monoclonal antibodies, explains how they are produced and explores their different applications. The lesson begins by breaking the term down into three parts so that students can understand that these substances are proteins that attach to antigens and come from a single clone of cells. Students will meet key terms such as lymphocytes, myelomas and hybridomas and will be able to link them to understand how these antibodies are produced. Moving forwards, time is taken to focus on the application of monoclonal antibodies in pregnancy tests. There are regular progress checks throughout the lesson so that students can assess their understanding and a set homework is included as part of the lesson.
This lesson has been written for GCSE students but can be used with lower ability A-level students who are studying this topic
This lesson describes how the structure, actions and function of the loop of Henle in the kidney is pivotal in the production of urine. The PowerPoint and accompanying resource are part of a series of 4 lessons which have been designed to cover point 5.1.2 [c] of the OCR A-level biology A specification, which is titled "the structure, mechanisms of action and functions of the mammalian kidney.
The lesson begins by challenging the students to recognise that the glomerular filtrate entering the loop will only contain water, ions and urea if the kidneys are functioning properly. Time is then taken to look at the structure of the loop of Henle, focusing on the descending and ascending limbs, and their differing permeabilities. Students will be reminded that this part of the nephron is located in the renal medulla, before a step-by-step guide is used to describe how the transfer of ions from the ascending limb to the descending limb, creates a very negative water potential in this region of the kidney. This allows water to move out of the descending limb to the tissue fluid and then into the capillaries.
The next part of the lesson challenges students to consider the bigger picture as they learn that this decreasing water potential in the medulla allows water to be reabsorbed from the filtrate in the collecting duct too.
The remainder of the lesson uses the real-world examples of the hopping mouse and kangaroo rat to check student understanding, and there are also prior knowledge checks to encourage students to make links to relevant content from earlier topics. All answers are embedded into the PowerPoint.
This is a fully-resourced REVISION lesson that consists of a detailed and engaging PowerPoint (86 slides) and associated worksheets that challenge the students on their knowledge of the content of Topic 5 (Health, disease and the development of medicines) of the Edexcel GCSE Biology specification. A wide range of activities have been written into the lesson to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions.
The lesson has been designed to include as much which of the content from topic 5, but the following sub-topics have been given particular attention:
Identification of bacterial, fungal and viral diseases in animals and plants
The treatment of bacterial infections
The reduction and prevention of the spread of pathogens
The body’s response to immunisation
The physical defences of humans and plants
The risk factors of CHD and possible treatments
BMI
The production and use of monoclonal antibodies
This lesson can be used at numerous points over the duration of the course, as an end of topic revision aid, in the lead up to the mocks or in the lead up to the actual GCSE exams.
This fully-resourced lesson describes how antibodies are used in the enzyme-linked immunosorbent assay (ELISA) test. The PowerPoint and accompanying resources are part of the last lesson in a series of 7 which have been designed to cover the details within point 2.4 of the AQA A-level specification. As the last lesson in this sub-topic, prior knowledge checks are included throughout the lesson which challenge the students on their knowledge of antibodies, immunity and protein structure.
The lesson begins by challenging the students to use the details of a poster to recognise that individuals who have recovered from COVID-19 could donate plasma and the antibodies be infused into newly infected individuals. They are then expected to answer a series of exam-style questions where they have to describe the structure of these specific antibodies, recognise this as artificial, passive immunity and describe the potential problems should the virus mutate and the shape of its antigens change. This leads into the introduction of the use of antibodies in other ways, namely the ELISA test. The methodology of this test has been divided into four key steps which students will consider one at a time and then answer further questions about key details such as the immobilisation of the antigen and the removal of proteins and antibodies that have not bound by the washing with the detergent after each step. The lesson focuses on the use of this test for medical diagnosis but other uses such as plant pathology and the detection of allergens is briefly introduced at the end of the lesson.
This fully-resourced lesson describes the process of anaerobic respiration in eukaryotes and explains how pyruvate can be converted to lactate or ethanol using the hydrogen atoms released from reduced NAD and that the reoxidation of this coenzyme allows glycolysis to continue. The engaging and detailed PowerPoint and accompanying differentiated resources have been designed to cover the first part of point 5.2.2 (i) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of anaerobic respiration in mammals and yeast.
The lesson begins with a focus on the coenzyme, NAD, and students are challenged to recall details of its role in the oxidation of triose phosphate. Students will recall that oxidative phosphorylation in aerobic respiration allows these coenzymes to be reoxidised and therefore recognise that another metabolic pathway has to operate when there is no oxygen available. Time is taken to go through the details of the lactate and ethanol fermentation pathways and students are encouraged to discuss the conversions before applying their knowledge to complete diagrams and passages about the pathways. Understanding checks in a range of forms are used to enable the students to assess their progress whilst prior knowledge checks allow them to recognise the links to earlier topics.
This lesson has been written to tie in with the other uploaded lessons on glycolysis and the stages of aerobic respiration
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within Topic 7 (Run for your life) of the EDEXCEL A-level Biology specification.
The topics tested within this lesson include:
The sliding filament theory
Aerobic respiration
Lactate and anaerobic respiration
The cardiac cycle
How heart rate is increased
Structure of a muscle fibre
Homeostasis
Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
This clear and concise lesson explains how the inheritance of two or more genes that have loci on the same autosome demonstrates autosomal linkage. The engaging PowerPoint and associated resource have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use fully-labelled genetic diagrams to interpret the results of crosses involving autosomal linkage.
This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be.
This lesson has been written to tie in with the other 6 lessons from topic 7.1 (Inheritance) and these have also been uploaded
This revision lesson uses a multiple-choice assessment to challenge the students on their understanding of topic 8, the control of gene expression. In addition to the 20 question assessment, this lesson includes a PowerPoint where the answers are revealed and additional questions are posed about the content of topic 8 which isn’t directly challenged in the questions. The PowerPoint also contains prior knowledge checks on content from topics 1, 3, 4 and 6.
Revision lessons of this format which challenge topics 1 - 7 are also uploaded.
This lesson describes and explains how production is affected by a range of farming practices designed to increase the efficiency of energy transfer. The PowerPoint and accompanying resources are part of the third lesson in a series of 3 which have been designed to cover the detail included in specification point 5.3 of the AQA A-level Biology specification.
Over the course of the lesson, a range of tasks which include exam-style questions with displayed mark schemes, guided discussion periods and quick quiz competitions will introduce and consider the following farming practices:
raising herbivores to reduce the number of trophic levels in a food chain
intensely rearing animals to reduce respiratory losses in human food chains
the use of fungicides, insecticides and herbicides
the addition of artificial fertilisers
The ethical issues raised by these practices are also considered and alternative methods discussed such as the addition of natural predators and the use of organic fertilisers like manure
As this is the last lesson in topic 5.3, it has been specifically planned to challenge the students on their knowledge of the previous two lessons and this includes a series of questions linking farming practice to the formula to calculate net production
This engaging and fully-resourced lesson looks at how genetic drift can arise after a genetic bottleneck or as a result of the Founder effect. The detailed PowerPoint and accompanying resources have been designed to cover the fourth part of point 7.3 of the AQA A-level Biology specification which states that students should be able to explain the importance of genetic drift in causing changes in allele frequency in small populations
A wide range of examples are used to show the students how a population that descends from a small number of parents will have a reduction in genetic variation and a change in the frequency of existing alleles. Students are encouraged to discuss new information to consider key points and understanding checks in a range of forms are used to enable them to check their progress and address any misconceptions. Students are provided with three articles on Huntington’s disease in South Africa, the Caribbean lizards and the plains bison to understand how either a sharp reduction in numbers of a new population beginning from a handful of individuals results in a small gene pool. Links to related topics are made throughout the lesson to ensure that a deep understanding is gained.
This engaging and fully-resourced lesson looks at the effects of stabilising, directional and disruptive selection as the three main types of selection. The PowerPoint and accompanying resources have been designed to cover the 3rd part of point 7.3 of the AQA A-level Biology specification which states that students should be able to identify each type of selection by its effect on different phenotypes.
The lesson begins with an introduction to the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. This method is covered later in topic 7 so this section of the lesson is designed purely to generate changes in numbers of the organisms. Sketch graphs are then constructed to show the changes in the population size in this example. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions.
This revision lesson provides students with the opportunity to assess their understanding of energy transfers in and between organisms (topic 5). The lesson includes a multiple-choice assessment of 20 questions, challenging photosynthesis, respiration, energy and ecosystems, and nutrient cycles, and a PowerPoint containing the answers, where each answer slide shows the exact specification code to enable students to note the areas which may require extra attention. The PowerPoint also contains additional questions to challenge content from topic 5 of the AQA A-level biology specification that isn’t directly covered by the 20 questions, and prior knowledge checks to encourage students to make links to related content from topics 1 - 4.
This lesson has been designed to be used at the end of topic 5, and in the build up to mocks and the final A-level examinations.
This resource has been designed to motivate students whilst they evaluate their understanding of the content in modules 1, 2, 3 and 5 of the OCR A-level Biology A specification which can be assessed in PAPER 1 (Biological processes). The resource includes a detailed and engaging Powerpoint (149 slides) and is fully-resourced with differentiated worksheets that challenge the students on a wide range of topics.
The resource has been written to include different types of activities such as exam questions with explained answers, understanding checks and quiz competitions. The aim was to cover as much of the specification content as possible but the following topics have been given particular attention:
Monosaccharides, disaccharides and polysaccharides
Glycogen and starch as stores and providers of energy
The homeostatic control of blood glucose concentration
Osmoregulation
Lipids
Ultrafiltration and selective reabsorption
Diabetes mellitus
Voluntary and involuntary muscle
The autonomic control of heart rate
The organisation of the nervous system
The gross structure of the human heart
Haemoglobin and the Bohr shift
Bonding
The ultrastructure of plant cells
Cyclic vs non-cyclic photophosphorylation
Oxidative phosphorylation
Anaerobic respiration in eukaryotes
Helpful hints and tips are given throughout the resource to help students to structure their answers. This resource can be used in the lead up to the actual Paper 1 exam or earlier in the course when a particular area of modules 1, 2, 3 or 5 is being studied.
If you are happy with this resource, why not look at the one which has been designed for Paper 2 (Biological diversity)?