Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Principles of HOMEOSTASIS and NEGATIVE FEEDBACK (AQA A-level Biology)
GJHeducationGJHeducation

Principles of HOMEOSTASIS and NEGATIVE FEEDBACK (AQA A-level Biology)

(0)
This is a fully-resourced lesson which has been designed to cover specification point 6.4.1 of the AQA A-level Biology specification. The resource contains a detailed and engaging PowerPoint and accompanying worksheets which ensure that students can apply their understanding of the principles of homeostasis to include the regulation by negative feedback. As homeostasis is a topic met at GCSE, this lesson has been written to build on this knowledge as well as to check on their prior knowledge of earlier A-level topics such as osmosis when considering blood water potential and the use of glucose as a respiratory substrate. Discussion points are written into the lesson at regular intervals to encourage the students to consider why a particular process or method takes place and understanding checks allow them to assess their progress. Students will recall how body temperature, blood water potential and blood glucose concentration are maintained within restricted limits and the importance of these systems are looked into in detail. Time is taken to consider the importance of maintaining these aspects, specifically with relation to the activity of enzymes. As such, students will also discuss how the pH of the blood is maintained. The key components of the control system are recalled and then time is taken to focus on the cell signalling that occurs between the coordination centre and the effectors. Students will learn to associate the response with either the use of the neuronal or hormonal system. The final part of the lesson looks at the importance of negative feedback in reversing the change in order to bring the aspect back to the optimum and the added degree of control which this provides. Positive feedback is also briefly mentioned at the end. This lesson has been written for A-level students who are studying the AQA A-level Biology course and because of the detail of this specification point, it is likely that this resource will cover 2 or more lessons in order for deep understanding to be developed.
OCR A-level Biology Module 5.1.2 REVISION (Excretion)
GJHeducationGJHeducation

OCR A-level Biology Module 5.1.2 REVISION (Excretion)

(0)
A fully resourced lesson which uses a combination of exam questions, quick tasks and quiz competitions to enable students to assess their understanding of the topics found within module 5.2 (Excretion as an example of homeostatic control) of the OCR A-level Biology A specification. The following topics are tested within the lesson: Excretion The structure of the liver Liver function Kidney structure Kidney function Osmoregulation Kidney failure Students will be engaged through the various activities whilst crucially being able to recognise those areas which need further attention.
Antibiotics
GJHeducationGJHeducation

Antibiotics

(0)
An engaging lesson presentation and associated worksheet that looks at the use of antibiotics to treat bacterial infections and the raises the issue of the potential over-use of these substances. The lesson begins by getting the students to recognise the difference between three key terms that begin with anti (antibiotics, antivirals, antiseptics). Students will be introduced to the idea that antibiotics are specific to a small range of bacteria and therefore the correct one has to be selected before being prescribed. Moving forwards, students will meet the idea of the zone of inhibition and will understand how the size of this zone can be used as an indicator to the effectiveness of the treatment. Students are shown how to calculate the size of the zone and then are tested on their ability to apply this mathemetical knowledge. Finally, time is taken to look at the links to the topic of natural selection to explain how some bacteria are resistant to certain antibiotics. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson has been designed for GCSE students but could be used as an introduction with A-level Biology students who are about to begin the topic of immunity.
Digestion in mammals (AQA A-level Biology)
GJHeducationGJHeducation

Digestion in mammals (AQA A-level Biology)

(0)
This lesson describes how large molecules are hydrolysed to smaller molecules by the enzymes produced by the digestive system in mammals. The detailed PowerPoint and accompanying worksheets are part of the 1st lesson in a series of 2 which have been designed to cover the content of point 3.3 of the AQA A-level Biology specification and this lesson includes descriptions of the action of amylase, disaccharidases, lipase, endopeptidases, exopeptidases and dipeptidases. The lesson has been designed to walk the students through the functions of the digestive system at each point of the digestive tract up until the duodenum and focuses on the action of the enzymes produced in the mouth, stomach and small intestine and by the accessory organs of the system. Time is taken to describe and explain key details, such as the fact that endopeptidases cleave peptide bonds within the molecules, meaning that they cannot break down proteins into monomers. The lesson is filled with exam-style questions which will develop their understanding of the current topic as well as checking on their knowledge of related topics which have been previously-covered such as the structure of the biological molecules and qualitative tests. In addition to the detailed content and regular questioning, the lesson PowerPoint contains guided discussion periods and two quick quiz competitions which introduce a key term and a key value in a fun and memorable way This lesson has been specifically planned to prepare the students for the very next lesson where the mechanisms for the absorption of the products of digestion are described.
Ultrastructure of prokaryotic cells (Edexcel A-level Biology A)
GJHeducationGJHeducation

Ultrastructure of prokaryotic cells (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the ultrastructure of a prokaryotic cell including the cell wall, capsule,plasmid, flagellum, pili, ribosomes, mesosomes and circular DNA. The engaging PowerPoint and accompanying resources have been designed to cover the specification point 3.4 that is detailed in the Pearson Edexcel A-level Biology A specification but also makes continual references to eukaryotic cells as covered in 3.1 - 3.3 so that comparisons can be made. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to come up with a 3-letter prefix that they believe will translate as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus which acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce so that students can recognise that prokaryotic cells do not contain centrioles
OCR A Level Biology Module 2.1.1 REVISION (Cell structure)
GJHeducationGJHeducation

OCR A Level Biology Module 2.1.1 REVISION (Cell structure)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module 2.1.1 (Cell structure) of the OCR A-level Biology A specification. The sub-topics and specification points that are tested within the lesson include: The use of microscopy to observe and investigate different types of cells The use and manipulation of the magnification formula The difference between magnification and resolution The ultrastructure of eukaryotic cells and the function of the different cellular components Interpretation of electron microscope images The interrelationship between the organelles involved in the production and secretion of proteins The similarities and differences in the structure and ultrastructure of prokaryotic and eukaryotic cells Students will be engaged through the numerous quiz rounds such as “It doesn’t HURT to CONVERT” and “Word association game” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
Sex-linkage (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Sex-linkage (Pearson Edexcel A-level Biology)

(0)
This is a fully-resourced lesson which looks at the inheritance of genes that are carried on the sex chromosomes in sex-linkage. Students will explore sex-linked diseases in humans and then are challenged to apply their knowledge to examples in other animals. The detailed PowerPoint and associated resources have been designed to cover the second part of point 3.8 (ii) of the Pearson Edexcel A-level Biology (Salters Nuffield) specification which states that students should understand sex-linkage. Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to apply their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender.
Stem cells, totipotency & pluripotency (Edexcel SNAB)
GJHeducationGJHeducation

Stem cells, totipotency & pluripotency (Edexcel SNAB)

(0)
This fully-resourced lesson describes the meaning of the terms stem cell, pluripotency and totipotency. The PowerPoint and accompanying worksheets have been designed to cover points 3.11 (i) and (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and therefore this lesson also contains discussion periods where the topic is the decisions that the scientific community have to make about the use of stem cells in medical therapies. The lesson begins with a knowledge recall of the structure of eukaryotic cells and the students have to use the first letters of each of the four answers to reveal the key term, stem cell. Time is then taken to consider the meaning of cellular differentiation, and this leads into the key idea that not all stem cells are equal when it comes to the number of cell types that they have the potential to differentiate into. A quick quiz round introduces the five degrees of potency, and then the students are challenged to use their understanding of terminology to place totipotency, pluripotency, multipotency, oligopotency and unipotency in the correct places on the potency continuum. Although the latter three do not have to be specifically known based on the content of specification point 3.11 (i), an understanding of their meaning was deemed helpful when planning the lesson as it should assist with the retention of knowledge about totipotency and pluripotency. These two highest degrees of potency are the main focus of the lesson, and key details are emphasised such as the ability of totipotent cells to differentiate into any extra-embroyonic cell, which the pluripotent cells are unable to do. The morula, and inner cell mass and trophoblast of the blastocyst are used to demonstrate these differences in potency. The final part of the lesson discusses the decisions that the scientific community have to make about the use of embryonic stem cells, adult stem cells and also foetal stem cells which allows for a link to chorionic villus sampling from topic 2. There is also a Maths in a Biology context question included in the lesson (when introducing the morula) to ensure that students continue to be prepared for the numerous calculations that they will have to tackle in the terminal exams. This resource has been differentiated two ways to allow students of differing abilities to access the work
Magnification formula (AQA A-level Biology)
GJHeducationGJHeducation

Magnification formula (AQA A-level Biology)

(0)
This lesson describes how to use the magnification formula to calculate the magnification or the actual size in a range of units. The PowerPoint and accompanying resources have been designed to cover the 3rd part of point 2.1.3 of the AQA A-level Biology specification The students are likely to have met the magnification formula at GCSE so this lesson has been written to build on that knowledge and to support them with more difficult questions when they have to calculate actual size without directly being given the magnification. A step by step guide is used to walk the students through the methodology and useful tips are provided. Students could be asked to calculate the actual size in millimetres, micrometres, nanometres or picometres so time is taken to ensure that they can convert between one and another. This lesson has been written to tie in with the previous two lessons on microscopes and measuring the size of an object and the two rounds of the ongoing quiz competition take place in this lesson.
Structure of DNA - GCSE
GJHeducationGJHeducation

Structure of DNA - GCSE

(1)
A fully-resourced lesson which looks at the structure of DNA in the detail which is required at GCSE level (14 - 16 year olds in the UK). The lesson includes an engaging lesson presentation (35 slides) and associated worksheets. The main aim of the lesson is to ensure that students recognise key terminology that comes with this topic such as nucleotide and (nitrogenous) bases. Engaging tasks have been written into the lesson, in order to maintain the motivation, such as when students are introduced to complimentary base pairing through a version of the gameshow “Take me Out”. Additional knowledge is provided at appropriate times in the lesson to stretch and challenge the more able. There are regular progress checks throughout the lesson so that students can assess their understanding of the structure. As stated above, this lesson has been written for GCSE students but could be used with younger students and also with A-level students as a means of a recap before they learn about this in greater detail.
Edexcel A-level Biology Topic 4 REVISION (Biodiversity and Natural resources)
GJHeducationGJHeducation

Edexcel A-level Biology Topic 4 REVISION (Biodiversity and Natural resources)

(0)
This is a fully-resourced REVISION lesson that challenges the students on their knowledge of the content found in TOPIC 4 (Biodiversity and Natural resources) of the Edexcel A-level Biology (Salters Nuffield) specification. The lesson contains an engaging PowerPoint (104 slides) and accompanying worksheets that use a range of exam questions, differentiated tasks and quiz competitions to motivate the students whilst they evaluate their knowledge of the different sub-topics. The lesson has been designed to cover as much of the topic 4 specification as possible, but the following sub-topics have been given particular attention: Three-domain classification The features of the kingdoms Evolutionary relationships Behavioural, anatomical and physiological adaptations Glycosidic bonds The structure and function of cellulose The ultrastructure of plant cells Calculating the index of diversity and the heterozygosity index Applying the Hardy-Weinberg principle to calculate allele frequencies This lesson is suitable for revision at the end of the topic, in the lead up to the mocks or in the lead up to the actual A-level exams as topic 4 is assessed on both Paper 1 and Paper 2.
Edexcel GCSE Biology Topic 8 REVISION (Exchange and transport in animals)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 8 REVISION (Exchange and transport in animals)

(0)
This is an engaging and fully-resourced revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 8 (Exchange and transport in animals) of the Edexcel GCSE Biology 9-1 specification. The specification points that are covered in this revision lesson include: Explain the need for exchange surfaces and a transport system in multicellular organisms including the calculation of surface area : volume ratio Explain how alveoli are adapted for gas exchange by diffusion between air in the lungs and blood in capillaries Describe the factors affecting the rate of diffusion, including surface area, concentration gradient and diffusion distance Explain how the structure of the blood is related to its function Explain how the structure of the blood vessels is related to their function Explain how the structure of the heart and circulatory system is related to its function, including the role of the major blood vessels, the valves Describe cellular respiration as an exothermic reaction which occurs continuously in living cells to release energy for metabolic processes, including aerobic and anaerobic respiration Compare the process of aerobic respiration with the process of anaerobic respiration Calculate heart rate, stroke volume and cardiac output, using the equation cardiac output = stroke volume × heart rate The students will thoroughly enjoy the range of activities, which include quiz competitions such as Where’s LENNY?” where they compete to recognise the blood vessel being described from the clues whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
Loss of biodiversity
GJHeducationGJHeducation

Loss of biodiversity

(0)
A thought-provoking and discussion-based lesson which looks at the different ways that biodiversity is being lost across the World. This lesson has been designed for GCSE students and includes a detailed lesson presentation (31 slides) and accompanying worksheet. The lesson begins by challenging the students to use their Biological knowledge to get to a quantitative answer, which is 80%, and then getting them to consider where this much biodiversity would be found around the World. The rainforest plays a key role in the lesson as important discussion topics such as deforestation can easily be related to this area. A range of tasks and discussion points are used to look at the different ways that humans are causing a loss in biodiversity. As well as deforestation, agriculture and eutrophication are explored and related back to the Science. This can be a word heavy topic and therefore a number of quick quiz competitions have been written into the lesson to maintain engagement and energy levels. In addition, progress checks are involved at regular points, including those which challenge mathematical skills in manipulating data. This allows students to constantly assess their understanding.
The pancreas and the release of insulin (OCR A-level Biology)
GJHeducationGJHeducation

The pancreas and the release of insulin (OCR A-level Biology)

(0)
This detailed and engaging lesson covers the detail of specification points 5.1.4 (c and d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the histology of the pancreas and the control of insulin secretion. There is a particular emphasis on structure throughout the lesson so that students can recognise the exocrine and endocrine tissues of the pancreas as well as describe their specific functions. The lesson begins with a list of endocrine glands and the students are challenged to select the gland which also has exocrine functions. This leads into a focus on the exocrine tissues of the pancreas, beginning with the enzymes that are secreted and form pancreatic juice. Students will discover how groups of these cells are called acini and the secretion of the enzymes into the lobule at the centre will lead to the intralobular ducts and finally the formation of the pancreatic duct. Moving forwards, students are introduced to the Islets of Langerhans and the specialised alpha and beta cells that are found within this endocrine tissue. The rest of this lesson looks at how the release of insulin from the beta cells is controlled. Some of the structures and substances involved have been met in earlier topics so a fun quiz round is used to see which students can recall these parts first. A series of questions and discussion points challenge the students to verbalise answers and to discuss key points so that the cascade of events that take place in the lead up to the release can be considered. In the final task, students have to describe these events in detail and this task has been differentiated so that students of differing abilities can access the work. This lesson has been specifically designed for students on the OCR A-level Biology A course and ties in well with the other lessons from module 5.1.4 on the control of blood glucose concentration and diabetes mellitus type I and II
Products of the light-independent reactions (Edexcel A-level Biology A)
GJHeducationGJHeducation

Products of the light-independent reactions (Edexcel A-level Biology A)

(0)
This lesson describes how the products of the light-independent reactions of photosynthesis are used by plants, animals and other organisms. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.8 (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification concerning the uses of GP and GALP but as the lesson makes continual references to biological molecules, it can act as a revision tool for a lot of the content of topic 1 and 2. The previous lesson described the light-independent reactions and this lesson builds on that understanding to demonstrate how the intermediates of the cycle, GP and GALP, are used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the GALP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from GALP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose (and fructose and galactose) sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this topic on the structure of the chloroplast and the light-dependent and light-independent reactions of photosynthesis
Totipotent, pluripotent and multipotent stem cells (Edexcel A-level Biology B)
GJHeducationGJHeducation

Totipotent, pluripotent and multipotent stem cells (Edexcel A-level Biology B)

(0)
This lesson describes the meaning of the term stem cell and the differences between totipotent, pluripotent and multipotent stem cells. The PowerPoint and accompanying worksheets have been designed to cover points 7.3 (i) and (ii) of the Edexcel A-level Biology B specification meaning that this lesson also contains discussion periods about the potential opportunities to use stem cells from embryos in medicine. The lesson begins with a knowledge recall of the structure of eukaryotic cells and the students have to use the first letters of each of the four answers to reveal the key term, stem cell. Time is then taken to consider the meaning of cellular differentiation, and this leads into the key idea that not all stem cells are equal when it comes to the number of cell types that they have the potential to differentiate into. A quick quiz round introduces the five degrees of potency, and then the students are challenged to use their understanding of terminology to place totipotency, pluripotency, multipotency, oligopotency and unipotency in the correct places on the potency continuum. Although the latter two do not have to be specifically known based on the content of specification point 7.3 (i), an understanding of their meaning was deemed helpful when planning the lesson as it should assist with the retention of knowledge about totipotency, pluripotency and multipotency. These three highest degrees of potency are the main focus of the lesson, and key details are emphasised such as the ability of totipotent cells to differentiate into any extra-embroyonic cell, which the pluripotent cells are unable to do. The morula, and inner cell mass and trophoblast of the blastocyst are used to demonstrate these differences in potency. The final part of the lesson discusses the decisions that the scientific community have to make about the use of pluripotent embryonic stem cells, adult stem cells and also multipotent foetal stem cells As there is a heavy mathematical content in the current A-level Biology exams, a Maths in a Biology context question is included in the lesson (when introducing the morula) to ensure that students continue to be prepared for the numerous calculations that they will have to tackle in the terminal exams. This resource has been differentiated two ways to allow students of differing abilities to access the work
Temporal and spatial SUMMATION and inhibition (AQA A-level Biology)
GJHeducationGJHeducation

Temporal and spatial SUMMATION and inhibition (AQA A-level Biology)

(1)
This engaging lesson covers the detail of the 2nd part of specification point 6.2.2 of the AQA A-level Biology specification which states that students should be able to explain temporal and spatial summation as well as understand inhibition by inhibitory synapses. This is a topic which is generally poorly understood by students or brushed over so considerable time has been taken to design the activities to motivate the students so that the content is memorable whilst still being covered in detail. Links are continually made to earlier topics in this module such as synapses and generator potentials but also to topics covered in the previous year and still to be covered. The lesson begins by challenging the students to recognise a description of generator potential and they will then discover that this is also known as an EPSP. Students will recall that a small depolarisation may not lead to the opening of the voltage gated channels and therefore the full depolarisation which is needed for the initiation of an action potential and will discuss how this problem could be overcome. Lots of discussion points like this are included in the lesson to encourage the students to challenge and debate why a particular process of mechanism occurs. Students will therefore learn that EPSPs can be combined and this is known as summation. A quiz round is used to introduce temporal and spatial summation. Moving forwards, students are presented with a number of examples where they have to decide why type of summation is involved. Again, the lesson has been written to include real-life examples such as chronic pain conditions so the chances of the content sticking is increased. The final part of the lesson introduces IPSPs and the effect of these on summation and action potentials is discussed. This lesson has been designed for students studying on the AQA A-level Biology course and ties in well with the other uploaded lessons from topic 6 which include cholinergic synapses and neuromuscular junctions, sensory receptors and nerve impulses
The structure of the nephron (AQA A-level Biology)
GJHeducationGJHeducation

The structure of the nephron (AQA A-level Biology)

(0)
This detailed lesson has been planned to cover the 1st part of specification point 6.4.3 of the AQA A-level Biology specification which states that students should be able to describe the detailed structure of the nephron and understand its role in ultrafiltration, selective reabsorption and osmoregulation. The lesson was designed at the same time as the other lessons in this topic on ultrafiltration, selective reabsorption and osmoregulation so that a common theme runs throughout and students can build up their knowledge gradually in order to develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption. This lesson has been designed for students studying on the AQA A-level Biology course
The Human Body's Defence Systems
GJHeducationGJHeducation

The Human Body's Defence Systems

(0)
A highly engaging lesson that looks at the structures that are found in the 1st line of defence and explores the methods of action use by phagocytes and lymphocytes. This lesson has been designed for GCSE students but could be used as an initial recap with A-level students before they go on to learn this topic in greater detail The lesson begins by introducing the meaning of the 1st line of defence. A quick competition is used to challenge the students to recognise the names of some of these structures when their names have some letters missing. Time is taken to discuss the action of the cilia and skin and then students are challenged to make links to the related topics of enzymes and pH as they complete a passage about the role of hydrochloric acid in the stomach. Moving forwards, students will learn that there are two types of white blood cells, phagocytes and lymphocytes, and the details of their actions is explored. Key points such as the specificity of antibodies and the involvement of enzymes are discussed in detail so that this topic can be understood to the depth needed at this level. In addition to a number of games to maintain engagement, progress checks are written into this at regular intervals to allow the students to assess their understanding.
OCR A-level Biology A Module 4.2.2 REVISION (Classification and evolution)
GJHeducationGJHeducation

OCR A-level Biology A Module 4.2.2 REVISION (Classification and evolution)

(0)
This revision resource has been designed with the simple aim of motivating the students whilst they assess their understanding of the content found in module 4.2.2 (Classification and evolution) of the OCR A-level Biology A specification. This module is often brushed over by students which leads to misconceptions and therefore time has been taken to explain the important concepts so that key points are recalled and retained. The resource includes a detailed and engaging Powerpoint (85 slides) and associated worksheets, some of which are differentiated to allow students of differing abilities to access the work. The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The biological classification of a species Classification hierarchy The three-domain and five-kingdom classification The features of the five kingdoms Phylogenetic trees Anatomical, physiological and behavioural adaptations Calculating the standard deviation Continuous and discontinuous variation In addition to these topics, some topics from other modules such as cell division and prokaryotic cells are tested in order to challenge the students on their ability to make links between the modules. The range of activities include exam questions and understanding checks as well as quiz competitions to maintain student engagement.