Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Edexcel A-level Biology Topic 2 REVISION (Genes and Health)
GJHeducationGJHeducation

Edexcel A-level Biology Topic 2 REVISION (Genes and Health)

(0)
A highly engaging lesson presentation (60 slides) and accompanying worksheets that uses exam questions (with explained answers), quick tasks and competitions to allow students to assess their understanding of the topic of Genes and Health (Topic 2). Students will have fun whilst recognising those areas of the specification which need further attention. Competitions include "Blockbusters" Hotseat" and "james BOND" so that literacy and numeracy skills are tested along with the content knowledge.
Animal & Plant cells (Eukaryotic cells)
GJHeducationGJHeducation

Animal & Plant cells (Eukaryotic cells)

(0)
An engaging lesson presentation (31 slides) and associated worksheet that looks at animal and plant cells as eukaryotic cells. The lesson focuses on the organelles which are found inside these two cells and ensures that students understand the difference between the cells as well as briefly looking at the difference to prokaryotic cells at the end of the lesson. There is a lot of key terminology involved in this topic, so a range of tasks including fun quiz competitions are used to introduce these terms in an engaging manner. The lesson is student based, with the emphasis on them to identify the functions of the different organelles as well as recognising which ones are found in both cells or just plant cells. Discussions are encouraged during the lesson with leading questions, such as questioning whether a red blood cell isn’t actually an eukaryotic cell because of the lack of nucleus. Progress checks have been written into the lesson at regular intervals during the lesson so that students can assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who are looking to extend their knowledge beyond the basics that they will be taught at this level.
Products of the light-independent reactions (Edexcel A-level Biology A)
GJHeducationGJHeducation

Products of the light-independent reactions (Edexcel A-level Biology A)

(0)
This lesson describes how the products of the light-independent reactions of photosynthesis are used by plants, animals and other organisms. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.8 (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification concerning the uses of GP and GALP but as the lesson makes continual references to biological molecules, it can act as a revision tool for a lot of the content of topic 1 and 2. The previous lesson described the light-independent reactions and this lesson builds on that understanding to demonstrate how the intermediates of the cycle, GP and GALP, are used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the GALP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from GALP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose (and fructose and galactose) sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this topic on the structure of the chloroplast and the light-dependent and light-independent reactions of photosynthesis
Adrenal glands (OCR A-level Biology A)
GJHeducationGJHeducation

Adrenal glands (OCR A-level Biology A)

(0)
This lesson describes the structure and functions of the adrenal glands, and includes the hormones secreted by the cortex and the medulla. The detailed PowerPoint and accompanying resources have been designed to cover point 5.1.4 (b) of the OCR A-level Biology A specification This lesson has been planned to closely tie in with the previous lesson on endocrine communication, and specifically the modes of action of peptide and steroid hormones. At the start of the lesson, the students have to use the knowledge acquired in this last lesson to reveal the key term cortex and this leads into the description of the structure of the adrenal glands in terms of the outer region and the inner region known as the medulla. The main part of the lesson focuses on the range of physiological responses of the organs to the release of adrenaline. Beginning with glycogenolysis, the need for adrenaline to bind to adrenergic receptors is described including the activation of cyclic AMP. A quiz competition is used to introduce other responses including lipolysis, vasodilation, bronchodilation and an increase in stroke volume. Links to previous topics are made throughout the lesson and students are challenged on their knowledge of heart structure and polysaccharides. The final part of the lesson introduces the three zones of the adrenal cortex and the steroid hormones that they produce along with their functions. Once again, a series of exam-style questions are used to challenge their ability to apply their understanding to an unfamiliar situation and to make biological links and the mark schemes are embedded in the PowerPoint.
Organisation of multicellular organisms (Edexcel SNAB)
GJHeducationGJHeducation

Organisation of multicellular organisms (Edexcel SNAB)

(0)
This lesson describes how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 3.13 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and focuses on the levels of organisation in humans and plants The lesson begins by using the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students are challenged to remember how the shape and arrangement of these cells differ in the trachea and alveoli in relation to their function. The link between specialised cells and tissues is made at this point of the lesson so students are reminded that a tissue is a group of cells that work together to perform a specific function or set of functions. Moving forwards, a quick quiz competition will challenge the students to recognise the liver, kidney, spinal cord and pancreas from a brief functional description and this leads into a series of questions that links back to topics 1 and 2 and earlier in topic 3 where blood clotting, proteins, osmosis, organelles, methods of transport, carbohydrates and enzymes were originally covered. These prior knowledge checks are found throughout the lesson, along with current understanding checks, and all of the mark schemes are embedded into the PowerPoint to allow students to assess their progress. In terms of organ systems, a quick task challenges them to recognise 8 of the 11 that are found in humans from descriptions and this leaves them to identify the gaseous exchange, digestive and reproductive systems as the remaining 3. This leads into a section about cystic fibrosis as this genetic disorder impairs the functioning of these systems. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy cells in the mesophyll layer and the guard cells are covered at length and in detail. The cells found in the xylem and phloem tissue are also discussed.
Specific immune response (OCR A-level Biology)
GJHeducationGJHeducation

Specific immune response (OCR A-level Biology)

(0)
This fully-resourced lesson describes the structure, different roles and modes of action of the B and T lymphocytes in the specific immune response. The detailed PowerPoint and accompanying resources have been designed to cover point 4.1.1 (f) as detailed in the OCR A-level Biology A specification and the structure of antibodies and the roles of memory cells is also briefly introduced so that students are prepared for an upcoming lesson on the secondary immune response (4.1.1 g) Antigen presentation was introduced at the end of the previous lesson so the task at the start of this lesson challenges students to recognise the name of this process and then they have to spot the errors in the passage that describes the details of this event. This reminds them that contact between the APC and T lymphocytes is necessary to elicit a response which they will come to recognise as the cellular response. A series of quick quiz rounds reveals key terms in a memorable way and one that is introduced is helper T cells. Time is then taken to describe the importance of cell signalling for an effective response and students will learn how the release of chemicals by these cells activates other aspects of the response. The role of the killer T cells and their production of cytotoxins is also described before an exam-style question is used to check on their understanding at this point of the lesson. This leads into the section of the lesson that deals with the humoral response and students will understand how this involves the antibodies that are produced by the plasma cells that are the result of clonal selection and expansion. The T and B memory cells are also introduced so that students can understand how they are retained in the body even after the pathogen has been overcome and will play a critical role in the development of immunity. The remainder of the lesson focuses on the role of the antibodies and the attachment of phagocytes to opsonins
Ecological terms & distribution of organisms (Edexcel A-level Biology A)
GJHeducationGJHeducation

Ecological terms & distribution of organisms (Edexcel A-level Biology A)

(0)
This lesson ensures that students know the meaning of key ecological terms and explains how biotic and abiotic factors control the distribution of organisms. The engaging PowerPoint and accompanying resources have been designed to cover points 5.1, 5.2 and 5.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and therefore cover the biological definitions of ecosystem, community, population and habitat. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry distribution niche The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Links are made to photosynthesis and net primary productivity as these will be met later in topic 5 as well as challenging their prior knowledge of adaptations, classification and biological molecules. The final part of the lesson uses an exam-style question to get the students to recognise that biotic and abiotic factors control the distribution of organisms in a habitat and to recall the concept of niche.
OCR A-level Biology A Module 5.1.3 REVISION (Neuronal communication)
GJHeducationGJHeducation

OCR A-level Biology A Module 5.1.3 REVISION (Neuronal communication)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module 5.1.3 (Neuronal communication) of the OCR A-level Biology A specification. The sub-topics and specification points that are tested within the lesson include: The structure and function of sensory, motor and relay neurones The generation and transmission of nerve impulses in mammals The structure and roles of synapses in neurotransmission Students will be engaged through the numerous quiz rounds such as “Communicate the word” and “Only CONNECT” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
OCR A-level Biology 2.1.5 REVISION (Biological membranes)
GJHeducationGJHeducation

OCR A-level Biology 2.1.5 REVISION (Biological membranes)

(0)
This revision resource has been written to include a range of activities that motivate the students whilst they assess their understanding of the content found in module 2.1.5 (Biological membranes) of the OCR A-level Biology A specification. The resource includes a detailed and engaging Powerpoint (71 slides) and associated worksheets The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The movement of molecules by active transport which requires ATP as an immediate source of energy The movement of molecules by passive processes The use of membrane-spanning proteins in facilitated diffusion and active transport Factors that increase the rate of simple diffusion The movement of water across membranes by osmosis The effects that solutions of different water potentials can have on animal and plant cells The fluid mosaic model of membrane structure The roles of the components of the plasma cell membrane In addition to these topics, some topics from other modules such as organelles, synapses and autoimmune diseases are tested in order to challenge the students on their ability to make links between the modules. The range of activities include exam questions and understanding checks as well as quiz competitions to maintain student engagement.
Increasing BIODIVERSITY
GJHeducationGJHeducation

Increasing BIODIVERSITY

(0)
A resourced lesson which looks at a range of methods that are used to increase biodiversity. The lesson includes an engaging lesson presentation (31 slides) and an associated worksheet The lesson begins by getting students to recall the term biodiversity and time is taken to ensure that the meaning of this word is fully understood. The lesson takes the form of a bus ride around London, looking at some of the attractions which act to increase or maintain biodiversity. Students will “virtually” visit both London Zoo and Kew Gardens and will learn how methods such as the captive breeding programme and the Millenium Seed Bank are used to influence biodiversity. Along with the bus ride, students will compete in a number of quiz competitions which act to maintain engagement whilst introducing key terms or facts. There are regular progress checks throughout the lesson to allow the students to check their understanding. This lesson has been designed for GCSE students.
Limiting factors of photosynthesis
GJHeducationGJHeducation

Limiting factors of photosynthesis

(0)
A fully-resourced lesson which has been designed for GCSE students and includes an engaging lesson presentation and associated worksheets. This lesson looks at the three limiting factors of photosynthesis, focusing on the graphs that they produce and ensures that students can explain why temperature is a factor. This lesson begins by introducing the students to the definition of a limiting factor. They are challenged to recognise that it would be photosynthesis which is limited by carbon dioxide concentration and light intensity. The third factor, temperature, is not introduced until later in the lesson so that students are given thinking time to consider what it might be. Having been presented with two sets of data, students are asked to draw sketch graphs to represent the trend. The limiting factors on the light intensity graph are taught to the students so they can use this when working out the limiting factors on the carbon dioxide graph. The remainder of the lesson focuses on temperature and more specifically why a change in this factor would cause a change in the rate of photosynthesis because of enzymes. The student’s knowledge of that topic is tested alongside. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding.
Edexcel A-Level Biology Topic 5 REVISION (On the Wild Side)
GJHeducationGJHeducation

Edexcel A-Level Biology Topic 5 REVISION (On the Wild Side)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick differentiated tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 5 (On the wild side) of the Pearson Edexcel A-level Biology A specification. The sub-topics and specification points that are tested within the lesson include: Be able to describe how to carry out a study on the ecology of a habitat Understand the stages of succession Understand the overall reaction of photosynthesis Understand the structure of chloroplasts in relation to their role in photosynthesis Understand the relationship between NPP, GPP and respiration Understand the effect of temperature on enzyme activity and its impact on plants and animals and microorganisms Know how the temperature coefficient Q10 quantifies the rate of an enzyme-catalysed reaction Understand how knowledge of the carbon cycle can be applied to methods to reduce atmopsheric levels of carbon dioxide A number of the tasks have been differentiated to allow all abilities of student to access the work and there is a big emphasis on the mathematical skills that can be tested in this topic. Students will be engaged through the numerous quiz rounds such as “Can you DEPEND on your knowledge” and “From NUMBERS 2 LETTERS” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
Meiosis (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Meiosis (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson focuses on the role of meiosis in ensuring genetic variation through the production of non-identical gametes. The detailed PowerPoint and accompanying resource have been designed to cover point 3.9 of the Pearson Edexcel A-level Biology (Salters Nuffield) specification which states that students should be able to describe how crossing over and independent assortment result in genetically unidentical daughter cells. In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations.
Maths in AQA A-level Biology REVISION
GJHeducationGJHeducation

Maths in AQA A-level Biology REVISION

(0)
The AQA specification states that a minimum of 10% of the marks across the 3 assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next! Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”. The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention: Hardy-Weinberg equation Chi-squared test Calculating size Converting between quantitative units Standard deviation Estimating populations of sessile and motile species Percentages and percentage change Cardiac output Geometry Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
Phenotype (Edexcel A-level Biology A)
GJHeducationGJHeducation

Phenotype (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how phenotype is the result of an interaction between genotype and the environment and can be affected by multiple alleles at many gene loci. The engaging PowerPoint and accompanying resources have been primarily designed to cover points 3.14 (i) & 3.15 of the Pearson Edexcel A-level Biology A specification but also includes activities to challenge the students on previous concepts in topics 3 and 2. The students begin the lesson by having to identify phenotype and species from their respective definitions so that a discussion can be encouraged where they will recognise that phenotypic variation within a species is due to both genetic and environmental factors. The main part of the the lesson focuses on these genetic factors, and describes how mutation and the events of meiosis contribute to this variation. A range of activities, which include exam-style questions and quick quiz rounds, are used to challenge the students on their knowledge and understanding of substitution mutations, deletions, insertions, the genetic code, crossing over and independent assortment. Moving forwards, the concept of multiple alleles is introduced and students will learn how the presence of more than 2 alleles at a locus increases the number of phenotypic variants. Another quick quiz round is used to introduce polygenic inheritance and the link is made between this inheritance of genes at a number of loci as an example of continuous variation. The final part of the lesson describes a few examples where environmental factors affect phenotype, such as chlorosis in plants. As this is the final lesson in topic 3, the numerous activities can be used for revision purposes and to show the links between different biological topics.
Testing for reducing sugars & starch (AQA A-level Biology)
GJHeducationGJHeducation

Testing for reducing sugars & starch (AQA A-level Biology)

(0)
This lesson describes the tests that detect reducing and non-reducing sugars and starch using Benedict’s solution and iodine/potassium iodide. The PowerPoint and accompanying resource are part of the last lesson in a series of 4 lessons which have been designed to cover the content of topic 1.2 (Carbohydrates) of the AQA A-level Biology specification. The lesson begins with an explanation of the difference between a qualitative and quantitative test so that the students recognise that the two tests described within this lesson indicate the presence of a substance but not how much. The students are likely to have met these tests at GCSE so this lesson has been planned to build on that knowledge and to add the knowledge needed at this level. A step by step guide walks the students through each stage of the tests for reducing and non-reducing sugars and application of knowledge questions and prior knowledge checks are included at appropriate points to ensure understanding is complete. Time is also taken to ensure that students understand the Science behind the results. The rest of the lesson focuses on the iodine test for starch and the students will learn that the colour change is the result of the movement of an ion into the amylose helix.
The mammalian gametes (Edexcel A-level Biology A)
GJHeducationGJHeducation

The mammalian gametes (Edexcel A-level Biology A)

(0)
This lesson describes the relationship between the specialised structural features of the mammalian gametes and their functions. The PowerPoint and accompanying resources have been designed to cover point 3.6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and includes descriptions of the acrosome in the head of the sperm and the zona pellucida in the egg The lessons at the start of topic 3 (Voice of the genome) described the ultrastructure of eukaryotic cells, so this knowledge is referenced throughout the lesson and the students are challenged on their recall and understanding through a range of prior knowledge checks. For example, two of the exam-style questions that are included in the resources challenge the students to explain why a sperm cell is classified as an eukaryotic cell and to recognise the centrioles and the nucleus from structural descriptions. Along with the mitochondria, time is then taken to discuss and to describe the role of these organelles in relation to the function of the sperm cell. When considering the role of the haploid nucleus, links are made to the upcoming topic of meiosis and the events that contribute to variation. The importance of the enzymes that are found inside the acrosome is emphasised and this leads into the second half of the lesson where the layers surrouding the plasma membrane of the egg cell (corona radiata and zona pellucida) are examined The final part of this lesson has been specifically planned to prepare the students for the next lesson in topic 3, where the acrosome reaction, cortical reaction and the fusion of nuclei that are involved in fertilisation are described
The role of the rER and Golgi in protein transport (Edexcel SNAB)
GJHeducationGJHeducation

The role of the rER and Golgi in protein transport (Edexcel SNAB)

(0)
This lesson describes the role of the rER and the Golgi apparatus in the formation of proteins, the transport within cells and their secretion. The PowerPoint and accompanying resources have been designed to cover point 3.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and also includes key details about the role of the cytoskeleton in the transport of the vesicles that contain the protein between the organelles and the membrane. The lesson begins with the introduction of the cytoskeleton and explains how this network of protein structures transverses across the cytoplasm and is fundamental to the transport of molecules between organelles. The lesson has been planned to closely tie in with the previous lesson on the ultrastructure of eukaryotic cells and students are challenged on their knowledge of the function of the organelles involved in protein formation (and modification) through a series of exam-style questions. By comparing their answers against the mark scheme embedded in the PowerPoint, students will be able to assess their understanding of the following: Transcription in the nucleus to form an mRNA strand and the exit of this nucleic acid through the nuclear pore Translation at the ribosomes on the surface of the rER to assemble the protein Transport of the vesicles containing the protein to the Golgi apparatus Modification of the protein at the Golgi apparatus Formation of the Golgi vesicle and its transport to the cell membrane for exocytosis Time is taken to discuss the finer details of this process such as the arrival of the vesicle at the cis face and the transport away from the trans face and the requirement of ATP for the transport of the vesicles along the microtubule track and exocytosis. The remainder of the lesson uses a series of exam-style questions about digestive enzymes (extracellular proteins) to challenge the students on their recall of the structure of starch and proteins
Spearman's rank correlation coefficient (OCR A-level Biology)
GJHeducationGJHeducation

Spearman's rank correlation coefficient (OCR A-level Biology)

(0)
This lesson describes how to use the Spearman’s rank correlation coefficient to consider the relationship between two sets of data. The PowerPoint and accompanying exam-style question are part of the final lesson in a series of 3 which have been designed to cover point 4.2.2 (f) of the OCR A-level Biology A specification. The previous two lessons described the different types of variation and explained how to calculate the standard deviation and how to use the Student’s t-test to compare two means. As with the previous lesson, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question. The mark scheme is displayed on the PowerPoint so they can assess their understanding
Surface area to volume ratio (AQA A-level Biology)
GJHeducationGJHeducation

Surface area to volume ratio (AQA A-level Biology)

(0)
This lesson describes the relationship between the size of an organism or structure and its surface to volume ratio. The PowerPoint and accompanying worksheets have been designed to cover point 3.1 of the AQA A-level Biology specification and also have been specifically planned to prepare the students for the upcoming lessons in topic 3 on gas exchange and absorption in the ileum. The students are likely to have been introduced to the ratio at GCSE, but understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of the surface area to volume ratio in order to increase this relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson that walks them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of larger organisms to increase the ratio at their exchange surfaces is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. This is further demonstrated by the villi and the microvilli on the enterocytes that form the epithelial lining of these folds in the ileum. The final part of the lesson introduces Fick’s law of diffusion so that students are reminded that the steepness of a concentration gradient and the thickness of a membrane also affect the rate of diffusion.