Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Exchange at the alveoli
GJHeducationGJHeducation

Exchange at the alveoli

(0)
A resourced lesson which looks at gas exchange at the alveoli and focuses on how these structures are adapted to carry out efficient gas exchange. The lesson includes an engaging lesson presentation (21 slides) and an associated worksheet. The lesson begins by revisiting the idea of the surface area to volume ratio of small organisms against larger organisms. This will remind students that due to the low surface area to volume ratio of a human, they need to have adaptations at the exchange surfaces to increase the surface area. Moving forwards, a range of competitions are used to introduce students to the numbers and key terms associated with the alveoli. Students will learn how the large number (700 million) of alveoli leads to a large surface area and how a permeable membrane is also essential. Time is written into the lesson to allow students to think about key features, such as the one cell thick lining, and relate this to the rate of diffusion. The lesson concludes with students completing a passage about how the respiratory and circulatory systems work together to maintain a steep concentration gradient between the alveoli and the capillaries. There are regular progress checks throughout the lesson to allow the students to check on their understanding. As always, the lesson finishes with a slide containing advanced terminology so that students who have aspirations to take A-level Biology can extend and deepen their knowledge
Edexcel GCSE Combined Science Topic B3 REVISION (Genetics)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic B3 REVISION (Genetics)

(0)
This is a fully-resourced REVISION lesson which challenges the students on their knowledge of the content in TOPIC B5 (Genetics) of the Edexcel GCSE Combined Science specification. The lesson uses an engaging PowerPoint (63 slides) and accompanying worksheets to motivate students whilst they assess their understanding of this topic. A range of exam questions, quick tasks and quiz competitions are used to test the following sub-topics: Recognising and using genetic terminology in context Constructing genetic diagrams to calculate offspring percentages for diseases caused by dominant and recessive alleles The sex chromosomes and sex determination Meiosis and the formation of haploid daughter cells The structure of DNA Extracting DNA from a fruit Genetic and environmental variation Mutations and their effect on the phenotype The mathematical element of the course is also tested throughout the lesson and students are given helpful hints on exam techniques and how to structure answers. This resource is suitable for use at the end of topic B3 or in the lead up to mocks or the actual GCSE exams.
Oxidative phosphorylation (OCR A-level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (OCR A-level Biology)

(0)
This clear and detailed lesson describes the process of oxidative phosphorylation, including the roles of the electron carriers, oxygen and the mitochondrial cristae and explains the role of chemiosmosis. The PowerPoint has been designed to cover points 5.2.2 (g) and (h) of the OCR A-level Biology A specification and includes details of the electron transport chain, proton gradients and ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 detailed steps and at each point, key facts are discussed and explored in further detail to enable a deep understanding to be developed. Students will see how the proton gradient across the inner membrane is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP by oxidative phosphorylation. Understanding checks are included throughout the lesson to enable the students to assess their progress and prior knowledge checks allow them to recognise the clear links to other topics and modules. This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration
The BLOOD VESSELS
GJHeducationGJHeducation

The BLOOD VESSELS

(0)
A fully-resourced lesson which looks at the structures of arteries, veins and capillaries and ensures that students can relate these features to their respective functions. The lesson includes an engaging lesson presentation (41 slides) and a differentiated worksheet The lesson begins by getting the students to come up with a really simple rule to remind themselves that arteries carry blood away from the heart. They are then challenged to extend this definition by considering the pressure of the blood found in arteries. Students will learn that most arteries carry oxygenated blood but will consider and recall the artery which is the exception to the rule. Students are shown a diagram of the basic structure of the artery and the reasons for the narrow lumen and thick muscular wall are explained. Moving forwards, students are challenged to use the work on arteries to sketch a diagram of a vein and to explain why they have given this vessel certain features. A quick competition is then used to check their understand of the work so far whilst introducing valves and again they are given a chance to work out which blood vessel would need these structures in their lumen. The remainder of the lesson focuses on the capillary and time is taken to relate the features to an actual example involving the alveoli of the lungs. There are regular progress checks throughout the lesson to allow the students to check on their understanding. As always, the lesson finishes with a slide containing advanced terminology so that students who have aspirations to take A-level Biology can extend and deepen their knowledge
Controlling blood glucose concentration
GJHeducationGJHeducation

Controlling blood glucose concentration

(0)
This engaging lesson guides students through the homeostatic control mechanism which is involved in controlling blood glucose concentrations and focuses on the critical interconversion between glucose and glycogen which is often poorly understood. The lesson begins by introducing glucose and ensuring that students recognise that this is a simple sugar which is critical for respiration. Links are made here and throughout the lesson to relateable topics such as the endocrine system so that students can recognise how exam questions will often encompass more than one topic. Students are challenged to recall knowledge about the pancreas and its release of insulin into the blood to travel to the liver. A quick competition is then used to maintain engagement and to introduce glycogen. Due to the large number of words beginning with g that are involved in this topic, time is taken to describe the role of glycogen so that it is not mistaken for glucose or glucagon. Students will learn how the conversion from glucose to glycogen and also the other way round is critical to how the concentration is controlled. The main student tasks involve them completing a partially finished passage about responding to an increase in blood glucose concentration and then using this as a guide to write their own full versions for when concentrations are low. These are just two of a number of progress checks that are written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but could be used for A-level lessons that are recapping on this topic before extra knowledge is added at this higher level
Edexcel GCSE Combined Science Topic B2 REVISION (Cells and control)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic B2 REVISION (Cells and control)

(0)
This is a fully-resourced REVISION lesson which challenges the students on their knowledge of the content in TOPIC B2 (Cells and control) of the Edexcel GCSE Combined Science specification. The lesson uses an engaging PowerPoint (70 slides) and accompanying worksheets to motivate students whilst they assess their understanding of this topic. A range of exam questions, quick tasks and quiz competitions are used to test the following sub-topics: The structure of the CNS Reflex reactions and the neurones involved Synapses Mitosis and the cell cycle The use of percentile charts to monitor growth Cell differentiation and specialisation Stem cells and their potential for use in medicine There is a big emphasis on the mathematical elements of the course such as percentage change and standard form and students are given helpful hints on exam techniques and how to structure answers. This resource is suitable for use at the end of topic B2 or in the lead up to mocks or the actual GCSE exams.
Mammalian heart structure (CIE International A-level Biology)
GJHeducationGJHeducation

Mammalian heart structure (CIE International A-level Biology)

(0)
This fully-resourced lesson looks at the external and internal structure of the mammalian heart and explains how the differences in the thickness of the chamber walls is related to function. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 8.2 (a) and (b) of the CIE International A-level Biology specification As this topic was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. As detailed in specification point (b), time is taken to ensure that students can explain why the atrial walls are thinner than the ventricle walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topics 8.1 and 8.2 including those which have already been covered like circulatory systems as well as those which are upcoming such as the cardiac cycle. There is also an application question where students have to explain why a hole in the ventricular septum would need to be repaired if it doesn’t naturally close over time.
Kingdoms of living organisms (OCR A-level Biology)
GJHeducationGJHeducation

Kingdoms of living organisms (OCR A-level Biology)

(0)
This detailed lesson explains how observable features at a microscopic level can be used to classify living organisms into one of the five kingdoms. The engaging PowerPoint and accompanying resources have been designed to cover point 4.2.2 © (i) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the features of the animalia, plantae, fungi, protoctista and prokaryotae kingdoms. This lesson begins with a knowledge recall as students have to recognise that prior to 1990, kingdom was the highest taxa in the classification hierarchy. Moving forwards, they will recall the names of the five kingdoms and immediately be challenged to split them so that the prokaryotae kingdom is left on its own. An opportunity is taken at this point to check on their prior knowledge of the structure of a bacterial cell from module 2.1.1. These prior knowledge checks are found throughout the lesson (along with current understanding checks) as students are also tested on their knowledge of the structure and function of cellulose. This is found in the section of the lesson where the main constituent of the wall can be used to distinguish between plantae, fungi and prokaryotae. Quick quiz competitions, such as YOU DO THE MATH and SAY WHAT YOU SEE are used to introduce key values and words in a fun and memorable way. The final part of the lesson looks at the protoctista kingdom and students will come to understand how these organisms tend to share a lot of animal or plant-like features. Both of the accompanying resources have been differentiated to allow students of differing abilities to access the work and this lesson has been written to tie in with the previously uploaded lesson on taxonomic hierarchy and the binomial naming system (4.2.2 a & b).
Understanding GENETIC TREES
GJHeducationGJHeducation

Understanding GENETIC TREES

(0)
A fully-resourced lesson which guides students through using genetic trees to work out the genotypes of unknown individuals and also how to work out whether a condition is caused by a dominant or a recessive allele. This lesson includes a detailed lesson presentation (24 slides) and a series of differentiated questions to allow the students to try to apply their new-found knowledge. The lesson begins by challenging students to recall the meaning of the key terms, genotype and phenotype. Time is taken initially to explain how genetic trees can be used in questions. Lots of useful hints are given throughout the lesson, such as filling in the genotypes for those that you already know like the affected in a recessive condition. Moving forwards, a worked example is used to talk the students through a question. Students are then given the opportunity to try a question and this has been differentiated so those who need extra assistance can still access the work. The remainder of the lesson shows the students how they can use the tree to work out whether the condition is caused by a dominant or recessive allele and again a progress check is used so students can assess their understanding. This lesson has been designed for both GCSE and A-level students.
Gel electrophoresis (OCR A-level Biology)
GJHeducationGJHeducation

Gel electrophoresis (OCR A-level Biology)

(0)
This fully-resourced lesson explains how gel electrophoresis is used to separate DNA fragments or proteins and explores its applications in genetic fingerprinting. The engaging and detailed PowerPoint and accompanying resources have been written to cover point 6.1.3 (e) of the OCR A-level Biology A specification The steps of the genetic fingerprinting process is covered the whole lesson but the main focus is the use of gel electrophoresis within this process. Students will be introduced to STRs and will come to recognise their usefulness in human identification as a result of the variability between individuals. Moving forwards, the involvement of the PCR is discussed and students are challenged on their knowledge of this process as it was encountered in a previous lesson. A brief outline of the role of restriction enzymes is provided to support students when these key gene technology enzymes are met in more detail later in the module. The main section of the lesson focuses on the use of gel electrophoresis to separate DNA fragments (as well as proteins) and the key ideas of separation due to differences in base pair length or molecular mass are discussed and explained. As well as current understanding checks, an application question involving Huntington’s disease is used to challenge their ability to apply their knowledge of the process to an unfamiliar situation. The remainder of the lesson describes how the DNA is transferred to a membrane and hybridisation probes are used to create a pattern on the X-ray film. Time has been taken to make continuous links to the previous lessons in module 6.1.3 as well as those from module 2.1.3 where DNA, RNA and protein synthesis were introduced.
Topic 16 REVISION: Inherited change (CIE A-level Biology)
GJHeducationGJHeducation

Topic 16 REVISION: Inherited change (CIE A-level Biology)

(0)
This fully-resourced REVISION lesson has been designed to enable the students to challenge their knowledge of the content of topic 16 (Inherited change) of the CIE A-level Biology specification. The engaging PowerPoint and accompanying differentiated worksheets will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention. The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus: Homologous pairs of chromosomes The meanings of haploid and diploid The behaviour of chromosomes in meiosis Crossing over and random assortment as causes of genetic variation The use of key genetic terminology The use of genetic diagrams to solve problems including autosomal and sex-linkage, dihybrid inheritance and gene interactions The use of the chi-squared test Gene mutations Genetic control of protein production in prokaryotes Gibberellins and how they cause the breakdown of DELLA proteins Due to the extensiveness of this resource, it is likely that it will take a number of lessons to go through all of the activities
Light-dependent stage of photosynthesis (OCR A-level Biology A)
GJHeducationGJHeducation

Light-dependent stage of photosynthesis (OCR A-level Biology A)

(0)
This lesson describes the light-dependent stage of photosynthesis and focuses on the mechanisms involved in the production of ATP and reduced NADP. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 5.2.1 (d) of the OCR A-level Biology A specification and has been specifically planned to link with the previous lesson on the structure of the chloroplast and photosynthesis and to prepare the students for the next lesson on the light-independent stage. The light-dependent stage is a process which students can find difficult to understand in the necessary detail so this lesson has been planned to walk them through all of the key details. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the cytochrome proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as eukaryotic cell structures and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic photophosphorylation. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take in excess of 2.5 hours of allocated A-level teaching time to complete.
Light-independent stage of photosynthesis (OCR A-level Biology A)
GJHeducationGJHeducation

Light-independent stage of photosynthesis (OCR A-level Biology A)

(0)
This fully-resourced lesson describes the series of reactions in the light- independent stage of photosynthesis. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 5.2.1 (e) of the OCR A-level Biology A specification and detailed planning includes continual links to the previous lesson on the light-dependent stage to ensure that students recognise how the products of that stage, ATP and reduced NADP, are essential for the Calvin cycle The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and TP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RuBisCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to TP The use of the majority of the TP in the regeneration of RuBP A step-by-step guide, with discussion points where the class consider selected questions, is used to show how 6 turns of the cycle are needed to form the TP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed.
Protein synthesis: TRANSCRIPTION (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Protein synthesis: TRANSCRIPTION (Edexcel Int. A-level Biology)

(0)
This detailed lesson describes the sequence of events that occur during the first stage of protein synthesis, which is known as transcription. The detailed lesson PowerPoint and accompanying worksheet are the first in a series of two lesson resources that have been designed to cover the details of point 2.13 of the Edexcel International A-level Biology specification and include details of the DNA template strand, RNA polymerase and messenger RNA. The lesson begins by challenging the students to work out that most of the nuclear DNA in eukaryotes does not code for polypeptides. This allows the promoter region and terminator region to be introduced, along with the structural gene. Through the use of an engaging quiz competition, students will learn that the strand of DNA involved in transcription is known as the DNA template (or antisense) strand and the other strand is the coding strand. Links to previous lessons on DNA and RNA structure are made throughout and students are continuously challenged on their prior knowledge as well as they current understanding of the lesson topic. Moving forwards, the actual process of transcription is covered in a 7 step bullet point description where the students are asked to complete each passage using the information previously provided. An exam-style question is used to check on their understanding before the final task of the lesson looks at the journey of mRNA to the ribosome for the next stage of translation. This lesson has been written to directly lead into the following lesson on translation
Cell surface membrane (Edexcel A-level Biology B)
GJHeducationGJHeducation

Cell surface membrane (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the structure of the cell surface membrane and references Singer and Nicholson’s fluid mosaic model. The detailed and engaging PowerPoint and accompanying resources have been designed to cover specification point 4.2 (i) of the Edexcel A-level Biology B specification and also makes clear links are made to related topics such as the binding of hormones as covered in topic 9 and the electron transport chain as covered in topic 5. The fluid mosaic model is introduced at the start of the lesson so that it can be referenced at appropriate points throughout the lesson. Students were introduced to phospholipids in topic 1 and an initial task challenges them to spot the errors in a passage describing the structure and properties of this molecule. This reminds them of the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to topic 9 so that students can understand how hormones or drugs will bind to target cells in this way and cause the release of cAMP on the interior of the cell. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are used and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
Osmosis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Osmosis (Edexcel A-level Biology B)

(0)
This detailed and engaging lesson describes how the passive transport of water molecules is brought about by osmosis. The PowerPoint and accompanying resources have been designed to cover the second part of specification point 4.2 (ii) as detailed in the Edexcel A-level Biology B specification and water potential is included throughout which will help students to prepare for core practical 6 It’s likely that students will have used the term concentration in their osmosis definitions at GCSE, so the aim of the starter task is to introduce water potential to allow students to begin to recognise osmosis as the movement of water molecules from a high water potential to a lower potential, with the water potential gradient. Time is taken to describe the finer details of water potential to enable students to understand that 0 is the highest value (pure water) and that this becomes negative once solutes are dissolved. Exam-style questions are used throughout the lesson to check on current understanding as well as prior knowledge checks which make links to previously covered topics such as the lipid bilayer of the cell membrane. The remainder of the lesson focuses on the movement of water between cells and a solution when these animal and plant cells are suspended in hypotonic, hypertonic or isotonic solutions.
Myogenic stimulation of the heart (Edexcel A-level Biology B)
GJHeducationGJHeducation

Myogenic stimulation of the heart (Edexcel A-level Biology B)

(0)
This engaging lesson describes the myogenic stimulation of the heart and focuses on the roles of the SAN, AVN and bundle of His. The PowerPoint and accompanying resources have been designed to cover the point 4.4 (iv) of the Edexcel A-level Biology B specification but also describes the role of the Purkyne fibres. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from earlier in the topic. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology.
The action & specificity of enzymes (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The action & specificity of enzymes (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the mechanism of action of enzymes and explains how their specificity is related to their 3D structure. The engaging PowerPoint and accompanying resources have been designed to cover points 2.7 (i), (ii) and (iii) in unit 1 of the Edexcel International A-level Biology specification and introduces intracellular and extracellular enzymes where these proteins act to reduce the activation energy. The lesson has been specifically planned to tie in with related topics that were previously covered such as protein structure, globular proteins and intracellular enzymes. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The lesson finishes with a focus on ATP synthase and DNA polymerase so that students are aware of these important intracellular enzymes when learning about the details of respiration and DNA replication
International & local conservation agreements (OCR A-level Biology A)
GJHeducationGJHeducation

International & local conservation agreements (OCR A-level Biology A)

(0)
This lesson describes the international and local conservation agreements that are made to protect species and habitats. The detailed PowerPoint and accompanying worksheets have been designed to cover point 4.2.1 (i) of the OCR A-level Biology A specification and includes details of CITES, CBD and CSS. Many hours of research have gone into the planning of this lesson to ensure that a range of interesting biological examples are included, with the aim of fully engaging the students in the material to increase its relevance. Beginning with the Convention on International Trade in Endangered Species of Wild Fauna and Flora, the students will learn that this was first agreed in 1973 and that 35000 species are currently found in appendix I, II or III. Time is taken to go through the meaning of each appendix and then the following animal and plant species are used to explain the finer details of the agreement: Tree pangolin, eastern black rhino for CITES appendix I Darwin’s orchid for CITES appendix II Four-horned antelope for CITES appendix III Exam-style questions are used to check on their understanding of the current topic as well as to challenge their knowledge of previously-covered topics such as the functions of keratin, when considering the structure of the rhino horn. Each of these questions has its own markscheme which is embedded in the PowerPoint and this allows the students to constantly assess their progress. Moving forwards, the Rio Convention on Biological Diversity is introduced and students will understand that this is a key document regarding sustainable development. The final part of the lesson considers local conservation agreements, focusing on the Countryside Stewardship Scheme and its replacement, the Environmental Stewardship Scheme. Students are told that farmers, woodland owners, foresters and land managers can apply for funding for a range of options including hedgerow management, low input grassland, buffer strips, management plans and soil protection options. The importance of the hedgerows for multiple species is discussed, and again a real-life example is used with bats to increase the likelihood of retention. The last task challenges them to use their overall knowledge of module 4.2.1 (biodiversity) to explain why buffer strips consisting of multiple types of vegetation are used and to explain why these could help when a farmer is using continuous monoculture.
t-test (CIE A-level Biology)
GJHeducationGJHeducation

t-test (CIE A-level Biology)

(0)
This lesson describes the t-test can be used to compare the variation of two different populations. The detailed PowerPoint and accompanying resources have been designed to cover point 17.1 [c] of the CIE A-level Biology specification and also explains how to calculate the standard deviation to measure the spread of a set of data as this value is needed in the t-test formula A step by step guide walks the students through each stage of the calculation of the standard deviation and gets them to complete a worked example with the class before applying their knowledge to another set of data in an exam-style question. This data looks at the birth weights of humans on one day in the UK and this is used again later in the lesson to compare against the birth weights of babies in South Asia when using the t-test. The null hypothesis is introduced and students will learn to accept or reject this based upon a comparison of their value against one taken from the table based on the degrees of freedom.