Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)

(0)
This lesson describes how Fick’s law of diffusion is governed by the three main properties of gas exchange surfaces in living organisms. The PowerPoint and accompanying worksheets have been designed to cover points 2.1 (i & ii) of the Edexcel International A-level Biology specification and there is a particular focus on the relationship between the size of an organism or structure and its surface to volume ratio. Adolf Fick is briefly introduced at the start of the lesson and the students will learn that his law of diffusion governs the diffusion of a gas across a membrane and is dependent on three properties. The students are likely to know that surface area is one of these properties but although they may have been introduced to the surface area to volume ratio at iGCSE, their understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of this ratio in order to increase the relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson to walk them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of a human to increase the ratio at the gas exchange surface is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. The remainder of the lesson introduces concentration difference and thickness of membrane as the other two properties in Fick’s law of diffusion and students are reminded that the maintenance of a steep concentration gradient and a reduction in the diffusion distance are critical for this transport mechanism. This lesson has been specifically planned to prepare students for the next lesson which describes how the structure of the mammalian lung is adapted for rapid gas exchange (specification point 2.1 [iii])
Biodiversity at different levels and Simpson's Index of diversity (OCR A-level Biology)
GJHeducationGJHeducation

Biodiversity at different levels and Simpson's Index of diversity (OCR A-level Biology)

(0)
This lesson discusses how biodiversity may be considered at different levels and describes how to calculate Simpson’s Index of diversity. The PowerPoint and accompanying worksheets have primarily been designed to cover points 4.2.1 (a, c and d) of the OCR A-level Biology A specification but also make links to the upcoming topics of classification, natural selection and adaptations A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise species, population, biodiversity, community and natural selection from their respective definitions. Once biodiversity as the variety of living organisms in a habitat is revealed, the students will learn that this can relate to a range of habitats, from those in the local area to the Earth. Moving forwards, the students will begin to understand that biodiversity can be considered at a range of levels which include within a habitat, within a species and within different habitats so that they can be compared. Species richness as a measure of the number of different species in a community is met and a biological example in the rainforests of Madagascar is used to increase its relevance. However, students will also be introduced to species evenness and will learn that in order for a habitat to be deemed to be biodiverse, it must be both species rich and even. The students are introduced to an unfamiliar formula that calculates the heterozygosity index and are challenged to apply their knowledge to this situation, as well as linking a low H value to natural selection. The rest of the lesson focuses on the calculation of Simpson’s Index of diversity and a 4-step guide is used to walk students through each part of the calculation. This is done in combination with a worked example to allow students to visualise how the formula should be applied to actual figures. Using the method, they will then calculate a value of D for a comparable habitat to allow the two values to be considered and the significance of a higher value is explained. All of the exam-style questions have mark schemes embedded in the PowerPoint to allow students to continuously assess their progress and understanding.
Osmosis and cells (OCR A-level Biology)
GJHeducationGJHeducation

Osmosis and cells (OCR A-level Biology)

(0)
This detailed lesson describes how the movement of water molecules by osmosis can affect both plant and animal cells. Both the PowerPoint and accompanying resources have been designed to cover specification point 2.1.5 (e) [i] as detailed in the OCR A-level Biology A specification and there is a particular focus on solutions of different water potentials. It’s likely that students will have used the term concentration in their osmosis definitions at GCSE, so the aim of the starter task is to introduce water potential to allow students to begin to recognise osmosis as the movement of water molecules from a high water potential to a lower potential, with the water potential gradient. Time is taken to describe the finer details of water potential to enable students to understand that 0 is the highest value (pure water) and that this becomes negative once solutes are dissolved. Exam-style questions are used throughout the lesson to check on current understanding as well as prior knowledge checks which make links to previously covered topics such as the lipid bilayer of the cell membrane. The remainder of the lesson focuses on the movement of water when animal and plant cells are suspended in hypotonic, hypertonic or isotonic solutions and the final appearance of these cells is described, including any issues this may cause. This lesson has been specifically written to tie in with the previous two lessons covering 2.1.5 (b) & (d) where the cell membrane, diffusion and active transport were described.
Anaerobic respiration - GCSE
GJHeducationGJHeducation

Anaerobic respiration - GCSE

(0)
A fully- resourced lesson which looks at the chemical reaction that is anaerobic respiration and ensures that students can understand why this form of respiration can only be used for short periods of time. The lesson includes an engaging lesson presentation (39 slides), a newspaper article and application questions. The lesson begins by challenging the students to recall information about aerobic respiration to recognise that the sole reactant of anaerobic respiration is glucose. A newspaper article about two atheletes from the 10000m race has been written to challenge the students to recognise why one of the athletes wouldnt be able to compete again in the near future whilst the other could. As a result, students will be introduced to lactic acid and will learn how this poisonous substance prevents muscle contraction and causes cramps. Time is taken to ensure that students are familiar with ATP and specifically that they recognise that a much lower yield is produced in this type of respiration. A perfect opportunity is taken to get the students to carry out a mathematical calculation to compare the yields. Oxygen debt is discussed and related back to the original newspaper article. Finally, anaerobic respiration in plants and yeast is considered in terms of fermentation and the word and symbol equation is written so that it can be compared to those from animals. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students but could be used with higher ability KS3 students or A-level students who want a recap before covering the topic in greater detail on their course.
Bohr effect (OCR A-level Biology)
GJHeducationGJHeducation

Bohr effect (OCR A-level Biology)

(0)
This fully-resources lesson looks at the phenomenon known as the Bohr effect and describes and explains how an increased carbon dioxide concentration affects the dissociation of oxyhaemoglobin. The PowerPoint has been designed to cover the second part of point 3.1.2 (j) of the OCR A-level Biology A specification and continually ties in with the previous lesson on the role of haemoglobin. The lesson begins with a terminology check to ensure that the students can use the terms affinity, oxyhaemoglobin and dissociation. In line with this, they are challenged to draw the oxyhaemoglobin dissociation curve and are reminded that this shows how oxygen associates with haemoglobin but how it dissociates at low partial pressures. Moving forwards, a quick quiz is used to introduce Christian Bohr and the students are given some initial details of his described effect. This leads into a series of discussions where the outcome is the understanding that an increased concentration of carbon dioxide decreases the affinity of haemoglobin for oxygen. The students will learn that this reduction in affinity is a result of a decrease in the pH of the cell cytoplasm which alters the tertiary structure of the haemoglobin. Opportunities are taken at this point to challenge students on their prior knowledge of protein structures as well as the bonds in the tertiary structure. The lesson finishes with a series of questions where the understanding and application skills are tested as students have to explain the benefit of the Bohr effect for an exercising individual. These questions are differentiated to allow students of differing abilities to access the work and to be challenged
CIE IGCSE Biology Topic 4 REVISION (Biological molecules)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 4 REVISION (Biological molecules)

(0)
This revision resource includes exam questions, understanding checks and quiz competitions, all of which have been written to motivate and engage the students whilst they assess their understanding of the content found in topic 4 (Biological molecules) of the CIE IGCSE Biology specification for examination in June and November 2020 and 2021. This revision resource contains an engaging PowerPoint (36 slides) and associated worksheets. The range of activities have been designed to cover as much of the Core and Supplement content as possible but the following sub-topics have been given particular attention: List the chemical elements that make up carbohydrates State how starch, glycogen, cellulose, proteins and fats and oils are made from their specific smaller molecules Describe the use of the iodine and Benedicts solution test Explain how the specific sequence of the amino acids in a protein controls the shape and the effect this has on an enzyme and antibodies Describe the structure of DNA Recognise that water is an important solvent which is involved in a large number of roles in the human body In addition, links have been made to other topics such as hormones and organelles so that students can see the importance of making links between Biological topics
OCR Gateway A GCSE Combined Science B1 (Cell-level systems) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science B1 (Cell-level systems) REVISION

(0)
This engaging lesson presentation (55 slides) and associated worksheets uses exam questions with displayed mark schemes, quick tasks and quiz competitions to enable students to assess their understanding of the topics found within module B1 of the OCR Gateway A Combined Science specification. The topics which are specifically tested within the lesson include: Plant and animal cells, Bacterial cells, Light microscopy, Electron microscopy, Enzymes, Aerobic respiration, Photosynthesis, Photosynthesis experiments and Limiting factors Students will enjoy the competitions such as "Shine a LIGHT on any errors" and "Eu vs Pro" whilst crucially being able to recognise those areas which need their further attention
Aerobic respiration - GCSE
GJHeducationGJHeducation

Aerobic respiration - GCSE

(0)
A resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes an engaging lesson presentation (27 slides) and an associated worksheet containing questions. The lesson begins by challenging the students to recognise a definition for breathing and a definition for respiration. This is aimed at helping them to understand that these are different processes as this is a common misconception made by students. Moving forwards, key details about aerobic respiration are introduced to the students through a range of tasks which include competitions to maintain engagement. Time is taken to ensure that students become familiar with ATP and understand that this is the energy store which will be broken down to release energy for the activities that occur in a living organism. The remainder of the lesson challenges the students to take their new found knowledge of aerobic respiration and apply it to range of unfamiliar situations such as explaining why a root hair cell would have such a large number of mitochondria. There are regular progress checks throughout the lesson to allow the students to check on their understanding. As always, the lesson finishes with a slide containing advanced terminology so that students who have aspirations to take A-level Biology can extend and deepen their knowledge
Food chains and webs
GJHeducationGJHeducation

Food chains and webs

(0)
An engaging lesson which focuses on the key terms which are involved in the ecology topic of food chains and food webs. Although this lesson is primarily designed for GCSE students, the content is suitable with KS3 students who are looking at the ecological relationships between organisms. The lesson begins by ensuring that students are confident in the construction of a food chain and that any common mistakes such as the arrows pointing in the wrong direction are eliminated. As with the other ecology lessons that I have designed, “ecology bingo” runs throughout the lesson to engage the students but also to challenge their recognition of key terms from definitions. Key terms such as producers and consumers are revisited in this lesson. The students will recall the names for the three types of consumers, based on their diets, and will make the link between the positions of producers, herbivores and carnivores in food chains. The remainder of the lesson focuses on the construction of a food web and describing changes in the numbers of organisms when there is a change to one of the other populations. Progress checks have been written into the lesson at regular intervals so students can constantly assess their understanding.
SELECTIVE REABSORPTION (OCR A-level Biology A)
GJHeducationGJHeducation

SELECTIVE REABSORPTION (OCR A-level Biology A)

(0)
This lesson has been written to cover the part of specification point 5.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the process of selective reabsorption. It has specifically been designed to build on the knowledge gained in the previous lessons on the structure of the nephron and ultrafiltration. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water. This lesson has been designed for students studying on the OCR-A level Biology A course and ties in nicely with the other lessons from 5.1.2 (c and d) on the structure and function of the kidney
Transport of water into the plant (OCR A-level Biology)
GJHeducationGJHeducation

Transport of water into the plant (OCR A-level Biology)

(0)
This detailed lesson describes the transport of water into the plant as well as the movement across the cortex to the endodermis and to the xylem. Both the engaging PowerPoint and accompanying resource have been designed to cover the first part of point 3.1.3 (d) as detailed in the OCR A-level Biology A specification. The lesson begins by looking at the specialised features of the root hair cell so that students can understand how these epidermal cells absorb water and mineral ions from the soil. Moving forwards, students are introduced to key terminology such as epidermis and root cortex before time is taken to look at the symplast, vacuolar and apoplast pathways that water and minerals use to transverse the cortex. Discussion points are included throughout the lesson to encourage the students to think about each topic in depth and challenges them to think about important questions such as why the apoplast pathway is needed for the water carrying the ions. The main part of the lesson focuses on the role of the endodermis in the transport of the water and ions into the xylem. Students will be introduced to the Casparian strip and will learn how this layer of cells blocks the apoplast pathway. A step by step method using class questions and considered answers is used to guide them through the different steps and to support them when writing the detailed description. This lesson has been specifically written to tie in with the next lesson on the pathways and mechanisms by which water and mineral ions are transported to the leaves and then out into the air surrounding the leaves.
OCR Gateway A GCSE Combined Science B6 (Global challenges) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science B6 (Global challenges) REVISION

(0)
This engaging lesson presentation (51 slides) and associated worksheets uses exam questions with displayed mark schemes, quick tasks and quiz competitions to enable students to assess their understanding of the topics found within module B6 of the OCR Gateway A Combined Science specification. The topics which are specifically tested within the lesson include: Genetic engineering, Health and disease, Spread of communicable diseases and preventing the spread, Non-communicable diseases, Treating CVD and Modern advances in medicine Students will enjoy the competitions such as "Is this ENGINEERED correctly" and "COMMUNICATE the word" whilst crucially being able to recognise those areas which need their further attention
Codominance and multiple alleles (CIE International A-level Biology)
GJHeducationGJHeducation

Codominance and multiple alleles (CIE International A-level Biology)

(0)
This fully-resourced lesson explores the inheritance of genetic characteristics that involve multiple alleles and codominant alleles. The engaging and detailed PowerPoint and differentiated worksheets have been designed to cover the part of point 16.2 (b) of the CIE International A-level Biology specification which states that students should be able to use genetic diagrams to solve problems which involve codominance and multiple alleles. The main part of the lesson uses the inheritance of the ABO blood groups to demonstrate how the three alleles that are found at the locus on chromosome 9 and the codominance of the A and B alleles affects the phenotypes. Students are guided through the construction of the different genotypes and how to interpret the resulting phenotype. They are challenged to use a partially completed pedigree tree to determine the blood group for some of the family members and to explain how they came to their answer. To further challenge their ability to apply their knowledge, a series of questions about multiple alleles and codominance in animals that are not humans are used. All of the questions are followed by clear, visual mark schemes to allow the students to assess their progress and address any misconceptions
PAPER 1 FOUNDATION TIER REVISION (AQA GCSE Combined Science)
GJHeducationGJHeducation

PAPER 1 FOUNDATION TIER REVISION (AQA GCSE Combined Science)

(0)
This is a fully-resourced lesson which uses exam-style questions, engaging quiz competitions, quick tasks and discussion points to challenge students on their understanding of the content of topics B1 - B4, that will assessed on PAPER 1. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the key points of each of the sub-topics are embedded. The lesson has been written to take place in numerous shops that could be found on the high street to allow the following sub-topics to be covered: Eukaryotes and prokaryotes The prefixes of size and converting between units The cell structures of animal and plant cells Mitosis and the cell cycle Benign and malignant tumours The principles of organisation The structure of the heart and the circulatory system The features of the alveoli which enable efficient gas exchange CHD The risk factors of non-communicable diseases Pathogens as microorganisms that cause infectious diseases Bacterial, viral, fungal and protist diseases Vaccinations Temperature and photosynthesis Enzymes The digestive system The role of bile The functions of the components of blood In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as calculating percentage change Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 1 exam
DNA replication (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

DNA replication (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the process of DNA replication and includes key details of the role of DNA polymerase. The detailed PowerPoint and accompanying resources have been designed to cover point 2.10 (i) of the Edexcel International A-level Biology specification and also includes descriptions of the roles of DNA helicase and DNA ligase and an introduction of this type of replication as semi-conservative. As the main focus of this lesson is the roles of the enzymes, students will understand how DNA helicase breaks the hydrogen bonds between nucleotide bases, DNA polymerase forms the growing nucleotide strands and DNA ligase joins the nucleic acid fragments. The specification specifically mentions DNA polymerase and in line with this, extra time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction by this enzyme, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
Patterns of inheritance (Edexcel Int A-level Biology)
GJHeducationGJHeducation

Patterns of inheritance (Edexcel Int A-level Biology)

(0)
This fully-resourced lesson uses step by step guides to walk students through the interpretation of genetic pedigree diagrams for monohybrid inheritance. The PowerPoint and accompanying resources have been designed to cover point 2.15 (ii) of the Edexcel International A-level Biology specification and includes the inheritance when there are more than two alleles at a gene locus as well as those that demonstrate codominance. In order to minimise the likelihood of errors and misconceptions, the guides that are included within the lesson will support the students with the following: Writing parent genotypes Working out the different gametes that are made following meiosis Interpreting Punnett crosses to work out phenotypic ratios Students can often find pedigree trees the most difficult to interpret and to explain so exemplar answers are used and the worksheets are differentiated so students can seek assistance if necessary.
Passive transport (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Passive transport (Edexcel Int. A-level Biology)

(0)
This lesson describes how molecules move across cell membranes by passive transport, as exemplified by simple and facilitated diffusion. The PowerPoint and accompanying resource have been designed to cover the first part of specification point 2.5 of the Edexcel International A-level Biology specification and the factors that increase the rate of diffusion are covered along with the limitations imposed by the phospholipid bilayer and the role of channel and carrier proteins The structure and properties of cell membranes were described in the lesson covering 2.2, so this lesson has been written to include continual references to the content of that lesson. This enables links to be made between the movement across a cell membrane with the concentration gradient, the parts of the membrane that are involved and any features that may increase the rate at which the molecules move. A quick quiz competition challenges students to recall Fick’s law of diffusion and a series of questions and tasks are used to demonstrate how a large surface area, a short diffusion distance and the maintenance of a steep concentration gradient will increase the rate of simple diffusion. Another quick quiz round is then used to introduce temperature and size of molecule as two further factors that can affect simple diffusion. The remainder of the lesson focuses on facilitated diffusion and describes how transmembrane proteins are needed to move small, polar or large molecules from a high concentration to a lower concentration across a partially permeable membrane
Diffusion (Edexcel A-level Biology B)
GJHeducationGJHeducation

Diffusion (Edexcel A-level Biology B)

(0)
This lesson describes how passive transport is brought about (simple) diffusion and facilitated diffusion. The PowerPoint and accompanying resources have been designed to cover the first part of specification point 4.2 (ii) of the Edexcel A-level Biology B specification but also covers 4.2 (iii) as the relationship between the properties of a molecule and the method by which they are transported is discussed. The structure of the cell surface membrane was described in the previous lesson, so this lesson has been written to include continual references to the content of that lesson. This enables links to be made between the movement across a cell membrane with the concentration gradient, the parts of the membrane that are involved and any features that may increase the rate at which the molecules move. A series of questions about the alveoli are used to demonstrate how a large surface area, a short diffusion distance and the maintenance of a steep concentration gradient will increase the rate of simple diffusion. One of two quick quiz rounds is then used to introduce temperature and size of molecule as two further factors that can affect simple diffusion. The remainder of the lesson focuses on facilitated diffusion and describes how transmembrane proteins are needed to move small, polar or large molecules from a high concentration to a lower concentration across a partially permeable membrane
Sampling plant species (OCR A-level Biology A)
GJHeducationGJHeducation

Sampling plant species (OCR A-level Biology A)

(0)
This lesson describes how random and non-random sampling strategies can be carried out to measure the biodiversity of a habitat. The PowerPoint and accompanying worksheets are part of the first lesson in a series of 2 which have been designed to cover the content of point 4.2.1 (b) (i) of the OCR A-level Biology A specification and this lesson specifically focuses on sampling plant species. The second lesson covers the sampling of animal species using apparatus such as pooters and sweeping nets. The lesson begins with a challenge, where the students have to recognise the terms random and stratified from descriptions that were met in modules 2.1.6 and 3.1.1. This introduces the concept of sampling and emphasises its importance in the measurement of biodiversity and the students will learn that there is random sampling as well as non-random sampling, and that one of these strategies is known as stratified. The next part of the lesson focuses on the random sampling of a habitat where the results found with a quadrat are used to estimate the population of sessile species like plants. Due to the heavy mathematical content in the A-level Biology exams, a step by step guide is used to walk the students through the key stages in these calculations and includes the extra steps needed when the quadrat does not have an area of 1 metre squared. A series of exam-style questions will then challenge them to apply their understanding and mark schemes are embedded in the PowerPoint to allow them to immediately assess their progress. The use of quadrats that have been divided into 100 squares and point frames to estimate percentage ground cover are also discussed and the overall advantages and disadvantages of random sampling are considered. Moving forwards, the stratified, opportunistic and systematic strategies of non-random sampling are discussed and again the advantages and disadvantages of all three are considered. Time is taken to focus on line and belt transects and students will learn that the latter can be particularly useful when an abiotic factor appears to change across a habitat.
ULTRAFILTRATION (OCR A-level Biology A)
GJHeducationGJHeducation

ULTRAFILTRATION (OCR A-level Biology A)

(0)
This detailed lesson has been written to cover the part of specification point 5.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the process of ultrafiltration. The aim of the design was to give the students the opportunity to discover this particular function and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other 5.1.2 kidney lessons on the structure of the nephron, selective reabsorption, osmoregulation and kidney failure