Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Titrations
GJHeducationGJHeducation

Titrations

(0)
A resourced lesson which looks at the key details of a titration to enable students to generate results which could be used in a titration calculation. The lesson includes an engaging lesson presentation (29 slides) and an associated worksheet. The lesson begins with a spot of fun as students are challenged to read the script of a scene from Friends to identify a neutralisation reaction. Students will learn that a method called a titration can use the results of an acid-base neutralisation to work out the concentration of an unknown. Students will learn the names of the equipment involved through a quiz competition and will then be shown how to set up a table to collect the results. Key terms such as titre, rough and end-point are explained. The lesson finishes with one further round of the competition called “Take the HOTSEAT” so that the knowledge of the key terminology from today’s lesson can be checked. The lesson has been designed with regular progress checks throughout so that students can check their understanding. This lesson has been designed for GCSE students.
Covalent DOT AND CROSS DIAGRAMS
GJHeducationGJHeducation

Covalent DOT AND CROSS DIAGRAMS

(0)
A concise lesson presentation (21 slides) which uses a range of methods to allow students to discover how to draw dot and cross diagrams for covalent structures. The lesson begins by challenging the students to recall their knowledge of electronic structure to show the outer shell of two specified atoms. They will then see how it is possible for both of these atoms to get full outer shells by sharing as happens in this type of bonding. A few more examples are used to consolidate this understanding before quick competition is used to check the understanding so far. Moving forwards, a step by step guide shows students how to draw dot and cross diagrams using the same techniques as was utilised with the hulas. This lesson has been written for GCSE students but could be used with higher ability KS3 students.
Negative feedback
GJHeducationGJHeducation

Negative feedback

(0)
An informative lesson presentation (20 slides) and associated worksheet that looks at how negative feedback loops act as a final control in homeostatic mechanisms. This is a topic which is poorly understood by students at both GCSE and even A-level, so whilst designing this lesson, the focus was on a few key points and applying it to a range of actual examples. Students will see how a negative feedback loop is used in the control of adrenaline release and temperature regulation and they will also be shown what would happen if this loop didn’t exist. Students are then challenged to apply their knowledge by putting the order of the regulation of metabolic rate into the correct order. The final part of the lesson briefly looks at how positive feedback loops also exist by using the example of the release of oxytocin during birth. This lesson has primarily been designed for GCSE students but is suitable for A-level Biology students too.
Health and disease
GJHeducationGJHeducation

Health and disease

(0)
A fast-paced lesson that explores the meaning of “health” and introduces the idea of communicable and non-communicable diseases. The lesson begins by showing the students an example of a health survey so they can complete a definition of the meaning of this term. Despite being widely used in the English language, the actual Scientific definition is not always well known by students so this 1st task is an important one. Moving forwards, students are given 5 minutes to see if they can fill an A-Z with the names of different diseases. Students will learn that diseases can be grouped as communicable or non-communicable and will be encouraged to discuss what the determining factor is on this classification. A quiz competition called “TO COM or NOT TO COM” is a play on words of Shakespeare’s famous saying but acts to test whether the students can distinguish a number of diseases as being spread by pathogens or not. After each disease is revealed, time is taken to look at the details of some of them like cystic fibrosis and the zika virus. The lesson concludes with the example of the human-papilloma virus and the connection between this and cervical cancer so that students can recognise that sometimes both types of disease are involved. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but could be used with younger students who are looking at the healthy living topic.
Temperature and the position of equilibrium
GJHeducationGJHeducation

Temperature and the position of equilibrium

(0)
This lesson explores how the temperature affects the position of equilibrium in a reversible reaction. This can be a difficult topic for students to understand and therefore the aim has been on the key details. The lesson begins by challenging the students to recall the rules of a dynamic equilibrium in order to recognise how if the equilibrium position changes then so do the concentrations. Links are made during the lesson to related topics such as endothermic and exothermic reactions and some time is taken to go back over calculating energy changes so that the type of reaction can be determined. The forward reaction in the Haber process is used as the example so students can see how an increase in temperature in this exothermic reaction would lead to a decrease in the yield of ammonia. Students are then challenged to use this example to explain how a decrease in temperature would affect the production of methanol. This worksheet is differentiated so students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Pressure and the position of the equilibrium
GJHeducationGJHeducation

Pressure and the position of the equilibrium

(0)
This concise lesson presentation (20 slides) guides students through the effect of changing pressure on the position of the equilibrium. The key skill to this topic involves recalling the rule of increasing pressure and being able to recognise how many moles are on each side of the reaction. For this reason, time is taken to remind the students of the meaning of the mole numbers in a reaction and working through an example together so they can see which side will be favoured. The final part of the lesson involves a game called “The PRESSURE is on” where students are in a race against the clock to balance an equation and then work out which way the equilibrium will shift when either the pressure is increased or decreased. This lesson has been written for GCSE students.
Magnetism and Electromagnetism REVISION (Edexcel IGCSE Physics TOPIC 6)
GJHeducationGJHeducation

Magnetism and Electromagnetism REVISION (Edexcel IGCSE Physics TOPIC 6)

(0)
This fully-resourced REVISION lesson has been written to challenge the students on their knowledge of the content of topic 6 (Magnetism and electromagnetism) of the Pearson Edexcel IGCSE Physics specification. The engaging PowerPoint and accompanying resources will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention. The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus: Magnets attract and repel other magnets and attract magnetic materials Magnetism is induced in some materials when they are placed in a magnetic field The construction of an electromagnet Use of the left-hand rule to predict the direction of the resulting force in a motor How the motor effect is applied in a loudspeaker The structure and function of a transformer Know and use the relationship between input and output voltages and the turns ratio Know and use the relationship between input and output power for 100% efficient transformer Explain the use of a step-up transformer in the transmission of electrical energy Quiz rounds such as “THE BIG REVEAL” and “WHAT EXACTLY AM I” are used to test the students on their knowledge of key terms and structures and all of the tasks are differentiated to allow students of differing abilities to access the work
Conservation of energy REVISION (Edexcel GCSE Physics Topic 3)
GJHeducationGJHeducation

Conservation of energy REVISION (Edexcel GCSE Physics Topic 3)

(0)
This revision lesson contains a wide range of activities that will challenge the students on their knowledge and understanding of the content detailed in topic 3 (Conservation of energy) of the Pearson Edexcel GCSE Physics specification. These activities include exam style questions which will allow the students to assess their progress against the clearly explained answer. There is also a quiz that runs throughout the course of the lesson and this has been designed to maintain engagement and motivation. The following specification points have been covered in this lesson: Recall and use the equation to calculate the gravitational potential energy Recall and use the equation to calculate the kinetic energy Explain what is meant by the conservation of energy Explain that mechanical transfers become wasteful when energy is dissipated to the surroundings Explain ways of reducing unwanted energy transfers Recall and use the equation to calculate efficiency Describe the main energy sources available for use on Earth and explain their patterns and trends in the use of energy resources
ATP (AQA A-level Biology)
GJHeducationGJHeducation

ATP (AQA A-level Biology)

(1)
Adenosine triphosphate is the universal energy currency and this lesson focuses on the structure of this nucleotide derivative. The PowerPoint has been designed to cover point 1.6 of the AQA A-level Biology specification and also explains how ATP must be hydrolysed to release energy and then re-synthesised during respiration and photosynthesis. As the previous sub-topic concerned the structure of DNA and RNA, the start of this lesson challenges the students on their knowledge of these polynucleotides so that they can recognise that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of active transport and skeletal muscle contraction are used as these are covered in greater detail in topic 2 and 6. The final part of the lesson considers how ATP must be re-synthesised and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively.
The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)
GJHeducationGJHeducation

The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)

(0)
This engaging and fully-resourced lesson covers the content of specification points 5.1.4 (e and f) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the differences between diabetes mellitus type I and II and the potential treatments of this disease. The lesson has been designed to take place in a diabetes clinic where students will be challenged to perform a number of roles such as diagnosing a patient with either type I or II and to write a letter to this patient explaining how the disease was caused and any treatments that will be recommended to control the disease. It has been planned to build on the knowledge that they will have of these diseases from GCSE and links are made to other A-level topics such as the beta cells of the pancreas which they considered during the lesson on the control of blood glucose concentration. The final part of the lesson looks at the potential treatments which include the genetic modification of bacteria. This topic is covered in greater detail in module 6.1.3 so this section of the lesson focuses on the enzymes involved as well as the plasmid DNA from a bacterial cell. This lesson has been designed for students studying the OCR A-level Biology A course and runs alongside the uploaded lesson on the control of blood glucose concentration as well as the other lessons that have been added for module 5.1.4
Writing ionic equations
GJHeducationGJHeducation

Writing ionic equations

(0)
A fully-resourced lesson that includes a lesson presentation (20 slides) and a differentiated worksheet. The lesson uses a step-by-step method to guide students through the process of writing net ionic equations. Students will learn the meaning of a spectator ion and be able to identify them within an equation so that they can be removed when writing the final net ionic equation. The lesson focuses on writing these equations for neutralisation and precipitation reactions, with the former being a very common question in assessments. This lesson has been written for GCSE students (14 - 16 year olds)
Atomic structure
GJHeducationGJHeducation

Atomic structure

(0)
A concise lesson presentation (27 slides) that looks at the key details of the sub-atomic particles and briefly explores how the atomic and mass numbers of the Periodic Table can be used to calculate the numbers of these particles in different atoms. The lesson begins with a Mathematical link as students are challenged to convert the size of an atom from standard form into a real number. Moving forwards, students will meet the three sub-atomic particles and be asked to predict which one is positive, neutral and negative in charge. The relative mass of a proton is shown and then students are asked to work out the mass of a neutron and an electron by observing some experimental results with a scales. Finally, the students are shown how to use the atomic number to work out the number of protons (and electrons) in an atom and how to work out the number of neutrons. This lesson has been designed to act as a knowledge recall and top-up as this should have already been learnt at KS3.
Phloem structure (AQA A-level Biology)
GJHeducationGJHeducation

Phloem structure (AQA A-level Biology)

(0)
This engaging lesson describes how the structure of the phloem enables this vascular tissue to transport organic substances in plants. Both the detailed PowerPoint and accompanying resource have been designed to cover the 3rd part of point 3.4.2 (Mass transport in plants) of the AQA A-level Biology specification. Comparative questions between the xylem and phloem are very common so the lesson begins by challenging the students to use their prior knowledge to complete the xylem column of a table with details including the presence of lignin and bordered pits and specific substances which are transported in this tissue. This has been written into the lesson to encourage the students to start to think about how the structure and function of the phloem may compare. 3 quiz rounds have been included in the lesson to maintain motivation and to introduce key terms. The first of these rounds will challenge the students to be the first to recognise descriptions of sucrose and amino acids as they learn that these are the two most common assimilate, which are the substances transported by the phloem. The focus of this lesson is the relationship between structure and function and all descriptions have these two parts highlighted to support the students to recognise the link. Moving forwards, students will be introduced to the sieve tube elements and the companion cells and time is taken to consider why the structure of these cells are so different. Current understanding checks are interspersed throughout the lesson to ensure that any misconceptions can be quickly addressed. The plasmodesmata is described to allow students to understand how assimilates move from the companion cells to the sieve tube elements as this will be particularly important for the next lesson on translocation. The final task of the lesson challenges the students to write a detailed passage about the structure and function of the phloem, incorporating all of the information that they have absorbed throughout the course of the lesson.
Thermistors and LDRs
GJHeducationGJHeducation

Thermistors and LDRs

(0)
This lesson has been designed to help students to explain the relationship between current and resistance in thermistors and LDRs. This can be a topic which students do not engage with or understand well, so this lesson has tried to add engagement with useful tips to deepen their knowledge. A number of quick competitions are used to introduce key terms such as semiconductor and then the key points explained. Students are given an exemplary answer for the thermistor so they can see how their work should be set out when trying to explain the graph produced by a LDR. Progress checks have been written into the lesson at regular intervals so that students can assess their understanding and any misconceptions can be addressed. This lesson has been designed for GCSE students.
Reversible reactions
GJHeducationGJHeducation

Reversible reactions

(0)
This lesson has been written for GCSE students, with the main focus being to introduce reversible reactions, show them how to represent them in both word and symbol equations, and to look at some well-known examples. Related topics such as the position of the equilibrium and endothermic and exothermic reactions are briefly mentioned so that students can recognise the potential crossover between topics. Some time is taken during the lesson to challenge the students to write a balanced symbol equation having been given a description of a reversible reaction. This task is differentiated with an assistance sheet so that all are able to access the learning. There are a number of these progress checks in this short lesson so that students can assess their understanding on a regular basis. Students will learn that the reaction in one direction will be exothermic and why this matters in terms of temperature and the equilibrium position. Increasing pressure and the number of moles is also discussed and an answer explained.
Development of DRUGS
GJHeducationGJHeducation

Development of DRUGS

(0)
A thought-provoking lesson presentation (34 slides) that looks at each of the stages in the development of drugs and considers the potential issues that arise at each of the stages. The lesson begins by ensuring that the students know the scientific definition of a drug and then they will be told how much is spent by the NHS alone each year on medicinal drugs so they can recognise the importance of this topic. Moving forwards, each stage in the development is considered in the appropriate detail. Students are challenged to consider some stages from both a scientific angle and a business angle so they can understand why certain animals are chosen for the testing. Key terms such as placebo and double blind trial are introduced and discussion time is written into the lesson so that insightful questions can be posed by all. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but could be used with KS3 students who might be carrying out research or a project on the topic of drugs.
Isotopes
GJHeducationGJHeducation

Isotopes

(0)
A quick, concise lesson presentation (15 slides) which together with a question worksheet focuses on ensuring that students can define an isotope and pick these substances out from a selection of substances. The lesson begins by looking at the number of sub-atomic particles in an aluminium atom so that students can recall what is shown by the atomic and mass numbers. This will enable students to calculate the number of protons, neutrons and electrons in three given isotopes and as a result, complete a definition of these substances. The remainder of this short lesson involves 4 application questions where students either have to recognise isotopes from a table or from a diagram and also are asked to write out the formula of an isotope. Ideally this lesson will be taught in conjunction with a lesson on atomic structure.
Electrical resistance
GJHeducationGJHeducation

Electrical resistance

(0)
A fully-resourced lesson that looks at the details of the electrical topic of resistance that students need to know for GCSE. The lesson includes a lesson presentation (21 slides) and associated worksheets. The lesson begins by looking at the meaning of resistance and focuses on the connection between resistance and current. Moving forwards, net resistance in series and parallel circuits is introduced and explained.
Nanoparticles
GJHeducationGJHeducation

Nanoparticles

(0)
An informative lesson presentation (24 slides) that looks at the relative size of the nanoparticles and explains why they are so effective for a range of purposes. The lesson begins by looking at exactly how small nanoparticles are and ensures that students can recognise this size in a range of ways, including standard form. Moving forwards, in order to help students to understand why these nanoparticles are being used in a lot of different ways, students are introduced to bulk materials. Included in the remainder of the lesson is calculating the surface area to volume ratio so this can be used as a comparison point. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson has been written for GCSE students.
Detecting ANIONS
GJHeducationGJHeducation

Detecting ANIONS

(0)
An engaging and practical based lesson presentation (24 slides) which challenges the students to carry out a range of practical tasks to learn the identification tests and positive results for the anions. The lesson begins by challenging the students to use their prior knowledge of chemical formulae to name two sets of ions. Students will be reminded of the definition of a cation so they can use this to write an accurate one for the anions. The rest of the lesson looks at the different tests and time is taken to explain the details behind each of them. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding. A set homework has also been included. This lesson has been written for GCSE students.