Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Immobilising an enzyme (CIE A-level Biology)
GJHeducationGJHeducation

Immobilising an enzyme (CIE A-level Biology)

(0)
This lesson describes how enzymes can be immobilised in calcium alginate and compares their activity against enzymes that are free in solution. The PowerPoint and the accompanying resources have been designed to cover point 3.2 (d) of the CIE A-level Biology specification. The lesson has been planned to challenge the students on their ability to apply knowledge to a potentially unfamiliar situation. A series of exam-style questions which include “suggest” and “describe and explain” questions are used throughout the lesson and these will allow the students to recognise the advantages and disadvantages of a particular method. Although the alginate method is the only one referenced in this specification point, the adsorption and covalent bonding methods are introduced and then briefly analysed to allow students to understand that a matrix doesn’t involve these bonds which could disrupt the active site. The remainder of the lesson introduces some actual examples of the use of immobilised enzymes with the aim of increasing the relevance. Please note that this lesson has been written to explain the effect of immobilisation on enzyme activity. The practical element of carrying out the investigation is described in a separate lesson.
Bohr effect (Edexcel A-level Biology B)
GJHeducationGJHeducation

Bohr effect (Edexcel A-level Biology B)

(0)
This lesson describes how an increased carbon dioxide concentration affects the dissociation of oxyhaemoglobin, the Bohr effect. The PowerPoint and accompanying resources have been designed to cover the second part of point 4.5 (i) of the Edexcel A-level Biology B specification and continually ties in with the previous lesson on the role of haemoglobin and dissociation curves. The lesson begins with a terminology check to ensure that the students can use the terms affinity, oxyhaemoglobin and dissociation. In line with this, they are challenged to draw the oxyhaemoglobin dissociation curve and are reminded that this shows how oxygen associates with haemoglobin but how it dissociates at low partial pressures. Moving forwards, a quick quiz is used to introduce Christian Bohr and the students are given some initial details of his described effect. This leads into a series of discussions where the outcome is the understanding that an increased concentration of carbon dioxide decreases the affinity of haemoglobin for oxygen. The students will learn that this reduction in affinity is a result of a decrease in the pH of the cell cytoplasm which alters the tertiary structure of the haemoglobin. Opportunities are taken at this point to challenge students on their prior knowledge of protein structures as well as the bonds in the tertiary structure. The lesson finishes with a series of questions where the understanding and application skills are tested as students have to explain the benefit of the Bohr effect for an exercising individual.
Haemoglobin vs myoglobin (Edexcel A-level Biology B)
GJHeducationGJHeducation

Haemoglobin vs myoglobin (Edexcel A-level Biology B)

(0)
This lesson describes the similarities and differences between the structure and function of haemoglobin and myoglobin. The PowerPoint and accompanying resource have been designed to cover point 4.5 (iii) of the Edexcel A-level Biology B specification Students have already covered the structure and function of haemoglobin in topics 1.3 and 4.5, so this concise lesson has been planned to challenge that knowledge. Students are introduced to myoglobin and will learn that this is an oxygen-binding protein found in the skeletal muscle tissue. Therefore the first part of the lesson focuses on slow twitch muscle fibres, where the content of myoglobin is high, and this presents an opportunity for links to be made to respiration, mitochondria and capillaries. The main part of the lesson challenges the students to compare the two proteins on structure and function including the number of polypeptide chains and affinity for oxygen and students can assess their understanding through use of the displayed mark schemes to the series of exam-style questions.
Antibodies & memory cells (CIE A-level Biology)
GJHeducationGJHeducation

Antibodies & memory cells (CIE A-level Biology)

(0)
This lesson explains the importance of memory cells in the development of immunity and describes how the structure of antibodies is related to function. The PowerPoint and accompanying resources have been designed to cover specification points 11.1 (e) and 11.2 (a) as detailed in the CIE A-level Biology specification. As memory B cells differentiate into plasma cells that produce antibodies when a specific antigen is re-encountered, it was decided to link these two topic points in one lesson. The lesson begins by checking on the students incoming knowledge to ensure that they recognise that B cells differentiate into plasma cells and memory cells. This was introduced in a previous lesson on the specific immune response and students must be confident in their understanding if the development of immunity is to be understood. A couple of quick quiz competitions are then used to introduce key terms so that the structure of antibodies in terms of polypeptide chains, variable and constant regions and hinge regions are met. Time is taken to focus on the variable region and to explain how the specificity of this for a particular antigen allows neutralisation and agglutination to take place. The remainder of the lesson focuses on the differences between the primary and secondary immune responses and a series of exam-style questions will enable students to understand that the quicker production of a greater concentration of these antibodies in the secondary response is due to the retention of memory cells.
Cardiac output (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Cardiac output (Edexcel Int. A-level Biology)

(0)
This lesson describes how to calculate the cardiac output as the product of stroke volume and the heart rate. The PowerPoint and accompanying resource have been designed to cover point 7.13 (i) of the Edexcel International A-level Biology specification. The lesson begins by challenging the students to recognise that the left ventricle has the most muscular wall of all of the heart chambers. This allows the stroke volume to be introduced as the volume of blood ejected from the left ventricle each heart beat and then a quiz competition is used to introduce normative values for the stroke volume and the heart rate. Moving forwards, students will learn that the cardiac output is the product of the stroke volume and the heart rate. A series of exam-style questions will challenge the students to use this formula and to manipulate it and to work out the percentage change. The final part of the lesson looks at the adaptation of the heart to aerobic training in the form of cardiac hypertrophy and then the students are challenged to work out how this would affect the stroke volume, the cardiac output and the resting heart rate.
Organ transplants
GJHeducationGJHeducation

Organ transplants

(0)
An engaging and informative lesson presentation (40 slides) that looks at the different steps that have to be taken when trying to identify potential donors for organ transplants. Links are made throughout the lesson to related topics such as the human defence systems and blood groups. The lesson begins by challenging the students to use their knowledge of the body’s defences to explain why closely matching tissues is critical when choosing a donor. Moving forwards, students will see how the four blood groups in the ABO system need to receive certain bloods and can only be given to certain others. There is a brief discussion of the HLA antigens and why this needs to be matched. The remainder of the lesson focuses on immuno-suppressant drugs and the advantages and disadvantages to individuals of taking these drugs. Progress checks have been written into the lesson at regular intervals to allow the students to constantly assess their understanding and any misconceptions to be addressed. This lesson has been written for GCSE students
Refraction
GJHeducationGJHeducation

Refraction

(0)
This lesson has been written for GCSE students and aims to ensure that they can explain in detail why light changes direction due to refraction. The key to the explanation is the use of the correct terms in context so the start of the lesson challenges the students to come up with the key words of light, bend, normal, density and speed when given a range of clues. The next part of the lesson works with the students to bring these key terms together to form a definition of refraction. Moving forwards, the relationship between density of a medium and the speed of light through that medium is discussed so that there is a clear understanding of why light bends one way or the other. The next task uses the definition to apply to a practical situation to draw a diagram of light moving from air to glass. The final part of the lesson involves a range of practicals so this topic can be explored further.
Principles of the PCR (OCR A-level Biology A)
GJHeducationGJHeducation

Principles of the PCR (OCR A-level Biology A)

(0)
This lesson explains the principles of the polymerase chain reaction (PCR) and the PowerPoint has been designed to cover point 6.1.3 (d) of the OCR A-level Biology A specification A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss the possible identity of the enzyme involved and to recall the action of this enzyme. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so the next part of this lesson focuses on each temperature and specifically the reasons behind the choice. Time is taken to examine the key points in detail, such as why Taq polymerase has to be used as it is not denatured at the high temperature as well as the involvement of the primers. This process is closely linked to other techniques like electrophoresis which is covered in a later lesson and ties are continuously made throughout the lesson This process is mentioned in other uploaded lessons in this module such as electrophoresis and genetic engineering to allow students to understand how it is critical for DNA analysis
Edexcel GCSE Combined Science Topic P15 REVISION (Forces and matter)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P15 REVISION (Forces and matter)

(0)
This is a concise REVISION lesson that contains an engaging powerpoint (28 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P15 (Forces and matter) of the Edexcel GCSE Combined Science specification. The following sub-topics in the specification are covered in this lesson: Describe the difference between elastic and inelastic distortion Recall and use the equation for linear elastic distortion including calculating the spring constant Use the equation to calculate the work done in stretching a spring Describe the difference between linear and non-linear relationships between force and extension Investigate the extension and work done when applying forces to a spring This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
Structure of sensory and motor neurones (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of sensory and motor neurones (CIE International A-level Biology)

(0)
This is a fully-resourced lesson which covers the detail of specification point 15.1 (b) of the CIE International A-level Biology specification which states that students should be able to describe the structure of a sensory and a motor neurone. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath that is present in both neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained and the lesson concludes with the introduction of the different types of motor neurones based on the type of muscle which they innervate. This lesson has been designed for students studying on the CIE International A-level Biology course and ties in well with the other uploaded lessons which cover the content of topic 15.1 (Control and coordination in mammals) .
The roles of the neuromuscular junction (CIE International A-level Biology)
GJHeducationGJHeducation

The roles of the neuromuscular junction (CIE International A-level Biology)

(0)
This concise, fully-resourced lesson covers the content of specification point 15.1 (i) of the CIE International A-level Biology specification which states that students should be able to describe the roles of the neuromuscular junction, transverse tubules and sarcoplasmic reticulum in the stimulation of the contraction of striated muscle. Due to a number of similarities between these structures and cholinergic synapses, this lesson uses prior knowledge of these connections between neurones to build a good understanding of the junctions. Students will discover that the events that occur at an axon tip mirror those which happen at the pre-synaptic bulb and this is then developed to look at the differences in terms of the events once the acetylcholine has bound to its receptor sites. There is a focus on the structure of the sarcolemma and time is taken to explain how the action potential is passed from this membrane to the transverse tubules in order to stimulate the release of calcium ions from the sarcoplasmic reticulum. As a result, this lesson ties in nicely with the following lesson on the contraction of skeletal muscle and students will be able to link the binding to troponin in that lesson to the release of these ions from this lesson. Both of the main tasks of the lesson have been differentiated so that students of all abilities can access the work and make progress. This lesson has been designed for those students studying on the CIE International A-level Biology course and ties in well with the other uploaded lessons on topic 15.1 (Control and coordination in mammals)
OCR Gateway A GCSE Chemistry C1 (Particles) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Chemistry C1 (Particles) REVISION

(0)
An engaging lesson presentation (44 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module C1 (Particles) of the OCR Gateway A GCSE Chemistry specification. The topics that are tested within the lesson include: Introducing particles Chemical and physical changes Atomic structure Isotopes Developing the atomic model Students will be engaged through the numerous activities including quiz rounds like “Order, Order” whilst crucially being able to recognise those areas which need further attention
Work done and POWER
GJHeducationGJHeducation

Work done and POWER

(0)
A fast paced lesson which focuses on the equation for work done and using this in calculations. The lesson includes a student-led lesson presentation and a question worksheet which together explore the different problems that students can encounter when attempting these questions and therefore acts to eliminate any errors. There is a big mathematical element to the lesson which includes the need to rearrange formula, understand standard form and to convert between units as this is a common task in the latest exams. Students will learn that some questions involve the use of two equations as they are needed to move from a mass to a force (weight) before applying the work done equation. The last part of the lesson looks at how work done is involved in the calculation for power. This lesson has been designed for GCSE students.
Sound waves
GJHeducationGJHeducation

Sound waves

(0)
An engaging lesson presentation that looks at how the amplitude and frequency of a sound wave can change. The lesson uses a range of sounds from recordings and challenges the students to draw the sound waves that would have been produced. In order to understand this topic, it is essential that the key terminology is understood and can be used in the correct context. Therefore, the start of the lesson focuses on wavelength and frequency and then longitudinal and challenges the students to recognise that these could all be related to sound waves. Moving forwards, students will hear a recording and then read a music “critique” that uses the key terminology so that can link the sounds to the change in shape of the waves. The final part of the lesson involves them drawing how the different sound waves would change from the control one. This lesson has been designed for GCSE students.
Link reaction (CIE International A-level Biology)
GJHeducationGJHeducation

Link reaction (CIE International A-level Biology)

(0)
This clear and concise lesson looks at the role of the link reaction in the conversion of pyruvate to acetyl coenzyme A which will then enter the Krebs cycle. The PowerPoint has been designed to cover point 12.2 © of the CIE International A-level Biology specification which states that students should be able to explain that this conversion occurs in the matrix when oxygen is present The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.
Bohr shift (AQA A-level PE)
GJHeducationGJHeducation

Bohr shift (AQA A-level PE)

(0)
This fully-resourced lesson explains how a shift of the oxyhaemoglobin dissociation curve is a beneficial phenomenon for exercising individuals. Both the detailed PowerPoint and accompanying resources have been designed to cover the 2nd part of the transportation of oxygen section as detailed in the Applied Anatomy and physiology unit of the AQA A-level PE specification. The previous lesson introduced the transportation of oxygen by haemoglobin and the oxyhaemoglobin dissociation curve so this lesson has been written to build on that knowledge and this is immediately checked at the start of the lesson by getting the students to recall key terms as well as the shape of the curve. A quick quiz competition, called SPORTS SCIENCE, is used to challenge their knowledge of the names of famous sports people to identify the surname of the scientist, Christian Bohr. They are told that this effect describes how an increase in the concentration of a substance affects the dissociation curve and are encouraged to predict what this substance might be. By shifting the curve to the right, students will learn that the affinity of haemoglobin is reduced. The curve is used to show how the saturation of haemoglobin is less at low partial pressures of oxygen when there is increased carbon dioxide concentration before they are challenged to summarise the effect on the dissociation before applying all of their knowledge to a final sporting situation. The final task has been differentiated 2 ways so that students of differing abilities are able to access the work
Active transport (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Active transport (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the movement of molecules by active transport, endocytosis and exocytosis. The PowerPoint and accompanying worksheets have been designed to cover the second part of specification points 2.5 (i) & (ii) of the Edexcel International A-level Biology specification and describes the role of ATP as an immediate source of energy as well as the role of the carrier proteins. ATP is introduced at the start of the lesson and students will learn that this molecule is a phosphorylated nucleotide so they are able to make appropriate links when they cover the structure of DNA and RNA later in topic 2. Students will learn that adenosine triphosphate is the universal energy currency and that the hydrolysis of this molecule can be coupled to energy-requiring reactions within the cell and the rest of the lesson focuses on the use of this energy input for active transport, endocytosis and exocytosis. Students are challenged to answer a series of questions which compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The lesson concludes with a link to a future topic as the students are shown how exocytosis is involved in a synapse.
Temperature & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Temperature & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains the effect of an increasing temperature on the rate of an enzyme-catalysed reaction. The PowerPoint and the accompanying resource are part of the 1st lesson in a series of 4 which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification and this lesson has been specifically planned to tie in with the lesson in 3.1 where the properties of enzymes and their mechanism of action were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in topics 19 and 13. Moving forwards, the rest of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of reaction and not the practical skills that would be covered in a core practical lesson
The structure of the KIDNEY (CIE International A-level Biology A)
GJHeducationGJHeducation

The structure of the KIDNEY (CIE International A-level Biology A)

(0)
This detailed lesson has been planned to cover the content of specification point 14.1 (e) of the CIE International A-level Biology specification which states that students should be able to describe the gross structure of the kidney and the detailed structure of the nephron. The lesson was designed at the same time as the other lessons in this topic on ultrafiltration, selective reabsorption and osmoregulation so that a common theme runs throughout and students can build their knowledge up gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption. This lesson has been designed for students studying on the CIE International A-level Biology course
Ultrafiltration (CIE International A-level Biology)
GJHeducationGJHeducation

Ultrafiltration (CIE International A-level Biology)

(0)
This detailed lesson has been written to cover the 1st part of specification point 14.1 (f) of the CIE International A-level Biology specification which states that students should be able to describe how the process of ultrafiltration is involved with the formation of urine. The aim of the design was to give the students the opportunity to discover this particular function and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the CIE International A-level Biology course and ties in closely with the other kidney lessons on the structure of the nephron, selective reabsorption and osmoregulation