Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic 1.4: DNA and protein synthesis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 1.4: DNA and protein synthesis (Edexcel A-level Biology B)

6 Resources
This bundle of 6 fully-resourced lessons have been designed to cover the content as detailed in topic 1.4 of the Edexcel A-level Biology B specification. The specification points in this DNA and protein synthesis topic which are covered by the lessons are as follows: The structure of DNA The semi-conservative replication of DNA A gene is a sequence of bases on DNA that codes for an amino acid sequence The structure of mRNA The structure of tRNA The process of transcription The process of translation Base deletions, insertions and substitutions as gene mutations The effect of point mutations on amino acid sequences The engaging PowerPoint lessons and accompanying resources contain a wide range of activities and tasks that include exam-style questions with displayed mark schemes, quick quiz competitions, useful hints and discussion periods. If you would like to see the quality of the lessons then download the structure of DNA and transcription lessons as these have been uploaded for free.
The significance of water (Edexcel A-level Biology B)
GJHeducationGJHeducation

The significance of water (Edexcel A-level Biology B)

(0)
This detailed lesson describes the importance of the dipole nature of water and its numerous properties to living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point 1.7 of the Edexcel A-level Biology B course and the intricate planning ensures that each role is illustrated using a specific example. As the final lesson in the biological molecules topic, not only does this lesson cover the important content related to water but also acts as a revision tool as it checks on key topic 1 content such as condensation and hydrolysis reactions. A wide range of tasks are used to check on current understanding and prior knowledge and quick quiz competitions introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: high specific heat capacity polar solvent surface tension incompressibility maximum density at 4 degrees Celsius
Collagen & haemoglobin (Edexcel A-level Biology B)
GJHeducationGJHeducation

Collagen & haemoglobin (Edexcel A-level Biology B)

(0)
This detailed lesson describes how the structure of collagen and haemoglobin are related to their function. The engaging PowerPoint and accompanying worksheet have been designed to cover specification point 1.3 (v) of the Edexcel A-level Biology B course and also introduces fibrous and globular proteins as a result. The first part of the lesson looks at the structure of haemoglobin, and describes how the presence of an iron-containing haem group on the outside of the 4 polypeptide chains explains its ability to form oxyhaemoglobin. Moving forwards, the importance of the solubility of this protein is considered and related to the direction that the hydrophobic R groups point. At this point of the lesson, the students are challenged to construct a comparison table which can be filled in as the lesson progresses and as they are given more details of collagen. The section of the lesson concerning collagen begins with the introduction of its function in the artery wall so that students can recognise how fibrous proteins have roles associated with mechanical strength. Time is taken to discuss their solubility as well as the presence of repetitive amino acid sequences. The remainder of the lesson considers four more proteins and the final task challenges the students to use their completed table to write a summary passage comparing globular and fibrous proteins.
Formation of polypeptides & protein structures (Edexcel A-level Biology B)
GJHeducationGJHeducation

Formation of polypeptides & protein structures (Edexcel A-level Biology B)

(0)
This lesson describes the formation of dipeptides & polypeptides and the different levels of protein structure. Both the engaging PowerPoint and accompanying resources have been designed to cover specification points 1.3 (ii), (iii) & (iv) of the Edexcel A-level Biology B specification and also makes continual links to previous lessons such as amino acids as well as to upcoming lessons like antibodies and enzymes so students can understand where proteins are involved. The start of the lesson focuses on the formation of a peptide bond during a condensation reaction so that students can understand how a dipeptide is formed and therefore how a polypeptide forms when multiple reactions occur. The main part of the lesson describes the different levels of protein structure. A step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. Students will see the differences between globular and fibrous protein and again biological examples are used to increase relevance. The lesson concludes with one final quiz round called STRUC by NUMBERS where the students have to use their understanding of the protein structures to calculate a numerical answer.
Structure of an amino acid (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of an amino acid (Edexcel A-level Biology B)

(0)
This engaging lesson acts as an introduction to topic 1.3 (proteins) by introducing the general structure of an amino acid. The PowerPoint lesson has been designed to cover point 1.3 (i) as detailed in the Edexcel A-level Biology B specification and provides a clear introduction to the following lesson on the formation of polypeptides, protein structures and globular and fibrous proteins. The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference, before cysteine is considered in greater detail due to the presence of sulfur atoms. Students are briefly introduced to disulfide bridges so they will recognise how particular bonds form between the R groups in the tertiary structure which is covered in the next lesson. One more quiz round called LINK TO THE FUTURE is used to conclude the lesson and demonstrates the range of roles performed by amino acids in the latter part of the course including translation at the ribosomes.
Structure & functions of phospholipids (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure & functions of phospholipids (Edexcel A-level Biology B)

(0)
This engaging lesson describes how the structure and properties of phospholipids relate to their functions in cell membranes. The PowerPoint has been designed to cover point 1.2 (iv) as detailed in the Edexcel A-level Biology B specification and includes regular references to the previous lesson on triglycerides to check on knowledge and understanding The role of a phospholipid in a cell membrane provides the backbone to the whole lesson. A quick quiz round called family affair, challenges the students to use their knowledge of the structure of a triglyceride to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lessons in topic 4 on the fluid mosaic model. The final part of the lesson explains how both facilitated diffusion and active transport mean that proteins are found floating in the cell membrane and this also helps to briefly prepare the students for upcoming topic 4 lessons.
Structure & roles of triglycerides (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure & roles of triglycerides (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how a triglyceride is synthesised and explains how the structure of this lipid relates to its numerous roles. The engaging PowerPoint and accompanying worksheets have been designed to cover specification points 1.2 (i), (ii and (iii) as detailed in the Edexcel A-level Biology B specification and links are also made to related future topics such as the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in topic 1 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Glycogen, starch & cellulose (Edexcel A-level Biology B)
GJHeducationGJHeducation

Glycogen, starch & cellulose (Edexcel A-level Biology B)

(1)
This detailed and fully-resourced lesson describes the relationship between the structure and function of the polysaccharides: glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover point 1.1 (iv) as it is detailed in the Edexcel A-level Biology B specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. By the end of this lesson, students should understand how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also whether it spirals or not. A range of activities are used to motivate and engage the students as they discover that glycogen is stored in liver and muscle cells, which it is able to do because of its compact structure. They are encouraged to discuss why the branched structure of this polysaccharide means that it can act as an immediate source of energy and they will recognise that hydrolysis reactions at the multiple ends of this chain will release glucose. Following on from the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses once they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. In the final part of the lesson, time is taken to focus on the formation of cellulose microfibrils and macrofibrils to explain how plant cells have the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
Synthesis & breakdown of disaccharides (Edexcel A-level Biology B)
GJHeducationGJHeducation

Synthesis & breakdown of disaccharides (Edexcel A-level Biology B)

(0)
This lesson describes how maltose, sucrose and lactose are synthesised during condensation reactions and broken down during hydrolysis reactions. The PowerPoint and accompanying question sheet have been designed to cover point 1.1 (iii) of the Edexcel A-level Biology B specification but also make links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as enzymes, translocation in the phloem and the lac operon in the control of gene expression. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge
Glucose & ribose (Edexcel A-level Biology B)
GJHeducationGJHeducation

Glucose & ribose (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the structure of the glucose and ribose as monosaccharides and considers their roles in living organisms. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 1.1 (ii) as detailed in the Edexcel A-level Biology B specification and also considers the structure of galactose, fructose and deoxyribose. Students were introduced to carbohydrates and monosaccharides in the previous lesson so this lesson builds on that initial understanding and adds key details to their knowledge of this simplest group. Using the molecular formula of glucose as a guide, students will be given the general formula for the monosaccharides and will learn that deoxyribose is an exception to the rule that the number of carbon and oxygen atoms are equal. Moving forwards, students have to study the displayed formula of glucose for two minutes without being able to note anything down before they are challenged to recreate what they saw in a test of their observational skills. At this point of the lesson, the idea of numbering the carbons is introduced so that the different glycosidic bonds can be understood in an upcoming lesson as well as the recognition of the different isomers of glucose. The difference between alpha and beta-glucose is provided and students are again challenged to draw a molecule of glucose, this time for the beta form. The remainder of the lesson focuses on the roles of the 6 monosaccharides and the final task involves a series of application questions where the students are challenged to suggest why ribose could be considered important for active transport and muscle contraction
Monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology B)
GJHeducationGJHeducation

Monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology B)

(0)
This detailed lesson describes the differences between monosaccharides, disaccharides and polysaccharides. The PowerPoint and accompanying resource have been designed to cover point 1.1 (i) that’s detailed in the Edexcel A-level Biology B specification and the aim of this lesson is to provide the students with key details to prepare them for the upcoming lessons on the carbohydrate groups. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen and starch are introduced as well as amylose and amylopectin as components of this latter polymer. The final part of the lesson considers how hydrolysis reactions allow polysaccharides and disaccharides to be broken back down into monosaccharides.
The effect of gene mutations on amino acid sequences (Edexcel A-level Biology B)
GJHeducationGJHeducation

The effect of gene mutations on amino acid sequences (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the different effects that gene mutations can have on the amino acid sequence of a protein. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 1.4 (viii) & (ix) as detailed in the Edexcel A-level Biology B specification and includes substitutions, deletions and insertions and considers a real life example in sickle cell anaemia. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered earlier in this topic. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of gene mutation whilst challenging the students to recognise three terms which are associated with the genetic code. The main focus of the lesson is substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. Students will learn that a substitution is responsible for the new allele that causes sickle cell anaemia and they are tested on their understanding through an exam-style question. As with all of the questions, a mark scheme is included in the PowerPoint which can be displayed to allow the students to assess their understanding. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
Translation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Translation (Edexcel A-level Biology B)

(0)
This detailed lesson describes the process of translation at the ribosome and includes detailed descriptions of the roles of the mRNA, tRNA and rRNA. The PowerPoint and accompanying resources have been designed to cover the second part of point 1.4 (vi) of the Edexcel A-level Biology B specification and this lesson also includes continual links to the previous lessons in this topic on transcription and the structure of DNA and RNA. Translation is a topic which is often poorly understood and so this lesson has been written with the aim of supporting the students to answer the different types of questions that can arise. The lesson begins by challenging the students to consider why it is so important that the amino acids are assembled in the correct order during the formation of the chain. Moving forwards, a quick quiz round called “LOST IN TRANSLATION” is used to check on their prior knowledge of the mRNA strand, the tRNA molecules and the ribosomes. The next task involves a very detailed description of translation that has been divided into 14 statements which the students have to put into the correct order. By giving them a passage of this detail, they can pick out the important parts to use in the next task where they have to answer shorter questions worth between 3 and 4 marks. These types of questions are common in the assessments and by building up their knowledge across the lesson, their confidence to tackle this type of question should increase. The final two tasks of the lesson involve another quiz, where the teams compete to transcribe and translate in the quickest time before using all that they have absorbed to answer some questions which involve the genetic code and the mRNA codon table
Transcription (Edexcel A-level Biology B)
GJHeducationGJHeducation

Transcription (Edexcel A-level Biology B)

(0)
This detailed lesson describes how the anti-sense strand of DNA is used as template to form messenger RNA (mRNA) during transcription. The PowerPoint and accompanying resource have been designed to cover the first part of point 1.4 (vi) as detailed in the Edexcel A-level Biology B specification. The lesson begins by challenging the students to recall that most of the nuclear DNA in eukaryotes does not code for polypeptides. This allows the promoter region and terminator region to be introduced, along with the structural gene. Through the use of an engaging quiz competition, students will learn that the strand of DNA involved in transcription is known as the anti-sense strand and the other strand is the sense strand. Links to previous lessons on DNA and RNA structure are made throughout and students are continuously challenged on their prior knowledge as well as they current understanding of the lesson topic. Moving forwards, the actual process of transcription is covered in a 7 step bullet point description where the students are asked to complete each passage using the information previously provided as well as their own biological knowledge. An exam-style question is used to check on their understanding before the final task of the lesson looks at the journey of mRNA to the ribosome for the next stage of translation.
Structure of mRNA & tRNA (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of mRNA & tRNA (Edexcel A-level Biology B)

(0)
This lesson describes the structure of messenger and transfer RNA and compares this against the structure of DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover points 1.4 (iv) and (v) as detailed in the Edexcel A-level Biology B specification which states that students should be able to describe the structure of the two forms of this nucleic acid. Students were introduced to the detailed structure of a nucleotide and DNA in the first lesson of topic 1.4, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as the understanding of the current topic. The lesson begins with the introduction of RNA as a member of the family of nucleic acids and this enables students to recognise that this polynuclotide shares a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis
DNA replication (Edexcel A-level Biology B)
GJHeducationGJHeducation

DNA replication (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how DNA is replicated semi-conservatively, including the roles of DNA helicase, polymerase and ligase. The detailed PowerPoint and accompanying resources have been designed to cover point 1.4 (ii) of the Edexcel A-level Biology B specification The main focus of this lesson is the roles of DNA helicase in the breaking of the hydrogen bonds between nucleotide bases, DNA polymerase in forming the growing nucleotide strands and DNA ligase in the joining of the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
Structure of DNA (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of DNA (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the structure of the DNA, including the structure of the nucleotides and the bonds that form the backbone and double helix. Both the engaging PowerPoint and accompanying resources have been designed to cover specification point 1.4 (i) as detailed in the Edexcel A-level Biology B specification. As students will already have some knowledge of this nucleic acid from GCSE, the lesson has been written to build on this prior knowledge and then to add key detail. Students need to have a clear understanding of the structure of a nucleotide for this topic as well as upcoming lessons on RNA and ATP, so the start of the lesson focuses on these monomers and the three components. Time is taken to look at the bases and students will be introduced to purines and pyrimidines and are reminded of the bonds that form between the complementary base pairs. A series of exam-style questions checks on their current understanding and mark schemes are displayed to enable the students to assess their understanding and to address any misconceptions should they arise. Phosphodiester bonds are also introduced before a quick quiz competition is used to introduce the numbers 5 and 3 so that the directionality of the DNA strand can be explained.
Phospholipids (WJEC A-level Biology)
GJHeducationGJHeducation

Phospholipids (WJEC A-level Biology)

(0)
This engaging lesson describes the relationship between the structure, properties and functions of phospholipids, focusing on its role in membranes. The PowerPoint has been designed to cover the second part of point (f) as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and includes constant references to the previous lesson on triglycerides. The role of a phospholipid in a cell membrane provides the backbone to the whole lesson. A quick quiz round called FAMILY AFFAIR, challenges the students to use their knowledge of the structure of a triglyceride to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lesson in AS unit 1, topic 3 on the fluid mosaic model. The final part of the lesson explains how both facilitated diffusion and active transport mean that proteins are found floating in the cell membrane and this also helps to briefly prepare the students for upcoming topic 3 lessons.
Triglycerides (WJEC A-level Biology)
GJHeducationGJHeducation

Triglycerides (WJEC A-level Biology)

(0)
This fully-resourced lesson describes the relationship between the structure, properties and functions of triglycerides in living organisms. The engaging PowerPoint and accompanying worksheets have been designed to cover the first part of point (f) as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and links are also made to related future topics such as the importance of the myelin sheath for the conduction of an electrical impulse which is covered in A2. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in topic 1 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Carbohydrates (WJEC A-level Biology)
GJHeducationGJHeducation

Carbohydrates (WJEC A-level Biology)

(1)
This engaging lesson describes the structure, properties and functions of the monosaccharides, disaccharides and polysaccharides. The PowerPoint lesson has been designed to cover point [c] as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and it makes clear links to the upcoming lessons in this topic on alpha and beta glucose and the properties of starch, glycogen, cellulose and chitin. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen, starch and cellulose are recalled and there is a brief introduction to chitin. The final part of the lesson considers how hydrolysis reactions allow polysaccharides and disaccharides to be broken back down into monosaccharides.