Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1122k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Introduction to gene mutations (CIE International A-level Biology)
GJHeducationGJHeducation

Introduction to gene mutations (CIE International A-level Biology)

(2)
This detailed lesson has been written to act as an introduction to gene mutations and the potential effects on the polypeptide chain. The engaging PowerPoint and accompanying resources have been designed to cover point 6.2 (b) and © of the CIE International A-level Biology specification and explores how substitution, insertions and deletions can change the primary structure. The lesson has been written to tie in with previous lessons where the genetic code was introduced and students will be challenged to describe how the degenerate nature of the code means that a substitution mutation doesn’t always lead to a change in structure. As detailed in point ©, students will learn how a single change to the primary structure of the HBB gene results in abnormal haemoglobin and they are challenged to recall knowledge about the structure and function of haemoglobin whilst completing a detailed passage about sickle cell anaemia. Time is also taken to look at changes to the structure as a result of frameshift mutations and this is related to the non-overlapping code. This topic is met again in topic 16 so this lesson has been designed to act as an introduction before greater detail can be added
Polypeptides and genes (CIE International A-level Biology)
GJHeducationGJHeducation

Polypeptides and genes (CIE International A-level Biology)

(0)
This fully-resourced lesson looks at the structure of genes and explores their role as a base sequence on DNA that codes for the amino acid sequence of a polypeptide. Both the PowerPoint and accompanying resource have been designed to cover point 6.2 (a) of the CIE International A-level Biology specification which states that students should understand how a gene codes for a polypeptide. The lesson begins with a prior knowledge check as the students have to recognise the key term chromosome from a description involving DNA and histones. This allows genes, as sections of a chromosome, to be introduced and the first of a number of quiz rounds is then used to get the students to meet the term locus so that they can understand how each gene has a specific location on a chromosome. Whenever possible, opportunities are taken to make links to the other parts of the CIE specification and this is utilised here as students are reminded that alternative versions of a gene (alleles) can be found at the locus. Moving forwards, students will learn that 3 DNA bases is a triplet and that each triplet codes for a specific amino acid. At this point, the genetic code is introduced and students are challenged to explain how the code contains 64 different triplets. By comparing this number against the number of different amino acids in proteins, students will see how each amino acid is encoded for by more than one triplet and how this explains the degenerate nature of the genetic code which forms a link to an upcoming lesson on gene mutations.
Structure of RNA (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of RNA (CIE International A-level Biology)

(0)
This lesson focuses on the structure of RNA and specifically the similarities and differences between this nucleic acid and DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover the second part of point 6.1 (b) of the CIE International A-level Biology specification which states that students should be able to describe the structure of this nucleic acid. Students were introduced to the detailed structure of a nucleotide and DNA in previous lessons, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as the understanding of the current topic. The lesson begins with the introduction of RNA as a member of the family of nucleic acids and this enables students to recognise that this polynuclotide shares a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis
Structure of DNA (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of DNA (CIE International A-level Biology)

(0)
This lesson looks at the detailed structure of DNA and builds on the knowledge from topic 1 to explain how this nucleic acid differs in the nucleus, mitochondria and chloroplasts of eukaryotic cells and in prokaryotic cells. Both the engaging PowerPoint and accompanying resources have been designed to cover the first part of point 6.1 (b) of the CIE International A-level Biology specification. As well as focusing on the differences between the DNA found in these two types of cells which includes the length, shape and association with histones, the various tasks will ensure that students are confident to describe how this double-stranded polynucleotide is held together by hydrogen and phosphodiester bonds. These tasks include exam-style questions which challenge the application of knowledge as well as a few quiz competitions to maintain engagement.
Structure of RNA (AQA A-level Biology)
GJHeducationGJHeducation

Structure of RNA (AQA A-level Biology)

(0)
This lesson focuses on the structure of RNA and specifically the similarities and differences between this nucleic acid and DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover part 1 of point 4.2 of the AQA A-level Biology specification which states that students should be able to describe the structure of molecules of messenger RNA and transfer RNA as well as understand the concept of a genome and proteome. Students were introduced to the detailed structure of DNA in previous lessons covering specification point 4.1, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as understanding of the current topic. The lesson begins with the introduction of the term genome and proteome and students are challenged to make the link between the genes in an organism and all of the proteins that can be produced by these sequence of bases. Moving forwards, students will learn that RNA is a member of the family of nucleic acids and therefore has a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis.
DNA and GENES (AQA A-level Biology)
GJHeducationGJHeducation

DNA and GENES (AQA A-level Biology)

(1)
This fully-resourced lesson looks at the structure of genes and explores their role as a base sequence on DNA that codes for the amino acid sequence of a polypeptide. Both the PowerPoint and accompanying resource have been designed to cover the second part of point 4.1 of the AQA A-level Biology specification and has been written to specifically tie in with the previous lesson on DNA in prokaryotes and eukaryotes. The lesson begins with a prior knowledge check as the students have to recognise the key term chromosome from a description involving DNA and histones. This allows genes, as sections of a chromosome, to be introduced and the first of a number of quiz rounds is then used to get the students to meet the term locus so that they can understand how each gene has a specific location on a chromosome. Whenever possible, opportunities are taken to make links to the other parts of the AQA specification and this is utilised here as students are reminded that alternative versions of a gene (alleles) can be found at the locus. Moving forwards, students will learn that 3 DNA bases is a triplet and that each triplet codes for a specific amino acid. At this point, the genetic code is introduced and students are challenged to explain how the code contains 64 different triplets. By comparing this number against the number of different amino acids in proteins, students will see how each amino acid is encoded for by more than one triplet and how this explains the degenerate nature of the genetic code. Again, an opportunity is taken to link to gene mutations. Finally, the students are told that most of the nuclear DNA in a eukaryote doesn’t code for a polypetptide and that even within a gene, there are coding and non-coding regions known as exons and introns respectively. The last section of the lesson uses a quiz round to check on all of the key terms which have been met in the two lessons on DNA, genes and chromosomes.
DNA in prokaryotes and eukaryotes (AQA A-level Biology)
GJHeducationGJHeducation

DNA in prokaryotes and eukaryotes (AQA A-level Biology)

(0)
This lesson looks at the structure of the DNA that is found in the nucleus, mitochondria and chloroplasts of eukaryotic cells and in prokaryotic cells. Both the engaging PowerPoint and accompanying resources have been designed to cover the first part of point 4.1 of the AQA A-level Biology specification. As students will already have some knowledge of this nucleic acid from GCSE and from the earlier A-level topics, the lesson has been written to build on this prior knowledge and then to add key detail. As well as focusing on the differences between the DNA found in these two types of cells which includes the length, shape and association with histones, the various tasks will ensure that students are confident to describe how this double-stranded polynucleotide is held together by hydrogen and phosphodiester bonds. These tasks include exam-style questions which challenge the application of knowledge as well as a few quiz competitions to maintain engagement.
Species and taxonomy (AQA A-level Biology)
GJHeducationGJHeducation

Species and taxonomy (AQA A-level Biology)

(1)
This engaging lesson covers the biological classification of a species, phylogenetic classification and the use of the binomial naming system. The PowerPoint and accompanying resources have been designed to cover point 4.5 of the AQA A-level Biology specification which is titled species and taxonomy. The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Although the art of courting might be lost on humans in the modern world, the marabou stork is used as an example to show how courtship behaviour is an essential precursor to successful mating in most organisms. Students are encouraged to discuss other examples of courtship behaviour, such as the release of pheromones and birdsong, so that their knowledge and understanding is broad. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system. The final part of the lesson briefly looks at how advances in genome sequencing and the comparison of common biological molecules has allowed the relationships between organisms to be clarified. This is a detailed lesson and it is estimated that it will take around 2 hours of A-level teaching time to cover the content and therefore this specification point.
Maths in GCSE Science REVISION (OCR Gateway A)
GJHeducationGJHeducation

Maths in GCSE Science REVISION (OCR Gateway A)

(0)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the six OCR Gateway A GCSE Combined Science papers. The mathematical element of the GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “It doesn’t HURT to CONVERT”, “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Empirical formula Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change The BMI equation Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision
Maths in Edexcel GCSE Combined Science REVISION
GJHeducationGJHeducation

Maths in Edexcel GCSE Combined Science REVISION

(2)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the Edexcel GCSE Combined Science papers. The mathematical element of the Edexcel GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “It doesn’t HURT to CONVERT”, “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Calculating the relative atomic mass using the mass and abundance of isotopes Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Empirical formula Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change The BMI equation Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.
Maths in AQA GCSE Combined Science REVISION
GJHeducationGJHeducation

Maths in AQA GCSE Combined Science REVISION

(0)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the AQA GCSE Combined Science papers. The mathematical element of the AQA GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.
Maths in Edexcel A-level Biology REVISION
GJHeducationGJHeducation

Maths in Edexcel A-level Biology REVISION

(1)
The Pearson Edexcel A-level Biology A (Salters Nuffield) specification states that a minimum of 10% of the marks across the assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next! Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”. The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention: Hardy-Weinberg equation Chi-squared test Calculating size Converting between quantitative units Standard deviation Estimating populations of sessile and motile species Percentages and percentage change Cardiac output Geometry Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
Maths in AQA A-level Biology REVISION
GJHeducationGJHeducation

Maths in AQA A-level Biology REVISION

(0)
The AQA specification states that a minimum of 10% of the marks across the 3 assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next! Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”. The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention: Hardy-Weinberg equation Chi-squared test Calculating size Converting between quantitative units Standard deviation Estimating populations of sessile and motile species Percentages and percentage change Cardiac output Geometry Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
Maths in A-level Biology REVISION (OCR)
GJHeducationGJHeducation

Maths in A-level Biology REVISION (OCR)

(3)
This engaging revision lesson has been designed to guide students through the numerous elements of the OCR A-level Biology A specification which challenge their mathematical skills. A good performance in these MATHS IN BIOLOGY questions across the three assessment papers can prove the difference between a number of grades and this resource provides the students with support and plenty of opportunities to apply their understanding. Both the provided and recall formulae are covered in this lesson and students can assess their progress against the displayed mark schemes with detailed explanations in order to identify any areas which require further attention. The following mathematical skills and formulae are covered during this revision lesson: Hardy-Weinberg principle Chi-squared test Calculating magnification Converting between units of size Standard deviation Mean Estimating populations using sampling results Genetic diversity (polymorphic gene loci) Simpson’s Index of Diversity Percentages Percentage change Cardiac output Respiratory quotient Retention factor The majority of the tasks are differentiated two ways, to allow students of differing abilities to access the work and the different quiz rounds such as “YOU DO THE MATH” and “Fill the VOID” will maintain engagement over the duration of this extensive lesson. It is estimated that this lesson will take in excess of 2 hours teaching time to cover and can be used at different points of the course when these skills need to be tested and honed.
Edexcel GCSE Physics EQUATIONS REVISION
GJHeducationGJHeducation

Edexcel GCSE Physics EQUATIONS REVISION

(1)
This detailed and engaging lesson has been written to challenge the students on their recall and application of the 22 equations which they have to know for the AQA GCSE Physics exams. The lesson is designed to not only check that they know these equations but also on their ability to rearrange formulae when required and to convert between units. The main task of the lesson consists of 13 exam-style questions which challenge 12 of these recall equations and then an engaging quiz competition and class discussions are used to identify the other 10. Students are guided throughout the lesson in the use of the mathematical skills and are shown examples to aid their progress. This lesson has been designed to tie in with the other 12 uploaded revision lessons which cover the content of the topics on the Edexcel GCSE Physics specification
AQA GCSE Physics EQUATIONS REVISION
GJHeducationGJHeducation

AQA GCSE Physics EQUATIONS REVISION

(4)
This detailed and engaging lesson has been written to challenge the students on their recall and application of the 23 equations which they have to know for the AQA GCSE Physics exams. The lesson is designed to not only check that they know these equations but also on their ability to rearrange formulae when required and to convert between units. The main task of the lesson consists of 13 exam-style questions which challenge 12 of these recall equations and then an engaging quiz competition and class discussions are used to identify the other 11. Students are guided throughout the lesson in the use of the mathematical skills and are shown examples to aid their progress. This lesson has been designed to tie in with the other 8 uploaded revision lessons which cover the content of the 8 topics on the AQA GCSE Physics specification
Features of the kingdoms (CIE International A-level Biology)
GJHeducationGJHeducation

Features of the kingdoms (CIE International A-level Biology)

(1)
This detailed lesson outlines the characteristics features of the kingdoms Protoctista, Fungi, Plantae and Animalia. The engaging PowerPoint and accompanying resources have been designed to cover point 18.2 [c] of the CIE International A-level Biology specification which states that students should be able to describe the features of these four eukaryotic kingdoms. This lesson begins with a knowledge recall as students have to recognise that prior to 1990, kingdom was the highest taxa in the classification hierarchy. Moving forwards, they will recall the names of the five kingdoms and immediately be challenged to split them so that the prokaryotae kingdom is left on its own. The features of this kingdom are given so that the lesson can focus on the four eukaryotic kingdoms. Students are constantly challenged on their understanding of the current topic as well as that of earlier topics, as demonstrated by a differentiated task about the structure and function of cellulose which was covered in topic 2. This task is found in the section of the lesson where the main constituent of the wall can be used to distinguish between plantae, fungi and prokaryotae. Quick quiz competitions, such as SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The final part of the lesson looks at the protoctista kingdom and students will come to understand how these organisms tend to share a lot of animal or plant-like features.
Taxonomic hierarchy (CIE A-level Biology)
GJHeducationGJHeducation

Taxonomic hierarchy (CIE A-level Biology)

(0)
This lesson describes the classification of species into the taxonomic hierarchy and cover point 18.2 (a) of the CIE A-level Biology specification. The engaging PowerPoint and accompanying resources have been designed to show students how the domain, kingdom, phylum, class, order, family, genus and species are used in modern-day classification. The lesson begins by with a knowledge recall as students have to use the provided information about a mule to explain why a horse and donkey are considered to be members of different species. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. The first of a number of rounds of a competition is used to engage the students whilst they learn the names of the 7 other taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students are told that a binomial naming system is used in Biology to provide a universal name for each species and the final task of the lesson challenges them to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism
Kingdoms of living organisms (OCR A-level Biology)
GJHeducationGJHeducation

Kingdoms of living organisms (OCR A-level Biology)

(0)
This detailed lesson explains how observable features at a microscopic level can be used to classify living organisms into one of the five kingdoms. The engaging PowerPoint and accompanying resources have been designed to cover point 4.2.2 © (i) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the features of the animalia, plantae, fungi, protoctista and prokaryotae kingdoms. This lesson begins with a knowledge recall as students have to recognise that prior to 1990, kingdom was the highest taxa in the classification hierarchy. Moving forwards, they will recall the names of the five kingdoms and immediately be challenged to split them so that the prokaryotae kingdom is left on its own. An opportunity is taken at this point to check on their prior knowledge of the structure of a bacterial cell from module 2.1.1. These prior knowledge checks are found throughout the lesson (along with current understanding checks) as students are also tested on their knowledge of the structure and function of cellulose. This is found in the section of the lesson where the main constituent of the wall can be used to distinguish between plantae, fungi and prokaryotae. Quick quiz competitions, such as YOU DO THE MATH and SAY WHAT YOU SEE are used to introduce key values and words in a fun and memorable way. The final part of the lesson looks at the protoctista kingdom and students will come to understand how these organisms tend to share a lot of animal or plant-like features. Both of the accompanying resources have been differentiated to allow students of differing abilities to access the work and this lesson has been written to tie in with the previously uploaded lesson on taxonomic hierarchy and the binomial naming system (4.2.2 a & b).
Taxonomic hierarchy and the binomial naming system (OCR A-level Biology)
GJHeducationGJHeducation

Taxonomic hierarchy and the binomial naming system (OCR A-level Biology)

(1)
This lesson covers the biological classification of a species, taxonomic hierarchy and the binomial system of naming species. The engaging PowerPoint and accompanying resources have been designed to cover points 4.2.2 (a) & (b) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of these three topics. The lesson begins by looking at the meaning of the term population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. The first of a number of rounds of a competition is used to engage the students whilst they learn the names of the 7 other taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system.