Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1937k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
KINETIC ENERGY
GJHeducationGJHeducation

KINETIC ENERGY

(0)
A fully-resourced lesson which focuses on using the kinetic energy equation to calculate energy, mass and speed. The lesson includes a lesson presentation (23 slides) which guides students through the range of calculations and accompanying worksheets which are differentiated. The lesson begins with the students being drip fed the equation so they are clear on the different factors involved. They are challenged to predict whether increasing the mass or increasing the speed will have a greater effect on the kinetic energy before testing their mathematical skills to get results to support their prediction. Moving forwards, students are shown how to rearrange the equation to make the mass the subject of the formula so they can use their skills when asked to calculate the speed. The final task of the lesson brings all of the learning together to tackle a set of questions of increasing difficulty. These questions have been differentiated so that students who need extra assistance can still access the learning. This lesson has been written for GCSE students
Energy sources
GJHeducationGJHeducation

Energy sources

(0)
This lesson has been designed to explore the range of energy sources which are used on Earth and specifically looks at why an increase in the use of renewable sources is critical for the future. The student’s scientific understanding is challenged at each step of the lesson but there is also a mathematical element running throughout. The lesson begins by challenging the students to predict which energy sources contributed the greatest % when presented with a pie chart. Students cover this topic in other subjects like Geography, so the lesson aims to build on this and consolidate the essential understanding. A range of renewable sources are discussed and key terms such as carbon-neutral taken on further. This lesson has been designed for GCSE students but parts could be used with younger students who are looking at
Weight and gravitational field strength
GJHeducationGJHeducation

Weight and gravitational field strength

(0)
A fast-paced lesson that looks at weight and how this differs on different planets depending upon the gravitational field strength. At the start of the lesson, the students are shown the equation to calculate gravity force and weight and are challenged to spot a difference (if there is one)! Time is then taken to explain how weight is the term used when a mass comes into the gravitational field of the Earth (or other planets). A quick understanding check, with the gravitational field strength Olympics, is used to see whether students can calculate this field and their mathematical skills are tested with a number of conversions needed to do so. Moving forwards, students are shown a number of masses and weights on the Earth and the Moon so they can see how mass does not change but weight will be different. The final task challenges them to apply their new-found knowledge to calculate their mass on the Earth, the Moon and Jupiter. This lesson has been designed for GCSE students but it is suitable for KS3 students who are exploring the Universe topic.
ORBITS
GJHeducationGJHeducation

ORBITS

(0)
A concise, fast-paced lesson that looks at the orbits of both natural and artifical satellites. The lesson has been written to build on the student’s knowledge of space from KS3 and add key details such as the gravitational pull between the different celestial objects. Students will learn how the speed of the orbiting object and the gravitational pull ensure that the object remains in orbit and consider what would happen should the speed change. Students are briefly introduced to a number of orbits of artificial satellites as well as the uses. This lesson has been designed for GCSE students
Work done and POWER
GJHeducationGJHeducation

Work done and POWER

(0)
A fast paced lesson which focuses on the equation for work done and using this in calculations. The lesson includes a student-led lesson presentation and a question worksheet which together explore the different problems that students can encounter when attempting these questions and therefore acts to eliminate any errors. There is a big mathematical element to the lesson which includes the need to rearrange formula, understand standard form and to convert between units as this is a common task in the latest exams. Students will learn that some questions involve the use of two equations as they are needed to move from a mass to a force (weight) before applying the work done equation. The last part of the lesson looks at how work done is involved in the calculation for power. This lesson has been designed for GCSE students.
Sound waves
GJHeducationGJHeducation

Sound waves

(0)
An engaging lesson presentation that looks at how the amplitude and frequency of a sound wave can change. The lesson uses a range of sounds from recordings and challenges the students to draw the sound waves that would have been produced. In order to understand this topic, it is essential that the key terminology is understood and can be used in the correct context. Therefore, the start of the lesson focuses on wavelength and frequency and then longitudinal and challenges the students to recognise that these could all be related to sound waves. Moving forwards, students will hear a recording and then read a music “critique” that uses the key terminology so that can link the sounds to the change in shape of the waves. The final part of the lesson involves them drawing how the different sound waves would change from the control one. This lesson has been designed for GCSE students.
Terminal velocity
GJHeducationGJHeducation

Terminal velocity

(0)
A fast-paced lesson where the main focus is the description of motion with reference to the forces involved. The lesson begins by introducing the term, terminal velocity, and then through consideration of examples in the English language, students will understand that this is the top velocity. The example of a skydiver is used and whilst the story of the dive is told, students are challenged to draw a sketch graph to show the different stages of this journey. An exemplary answer is used to visualise how the motion should be described. Related topics like free body diagrams and resultant forces are brought into the answer in an attempt to demonstrate how they are all interlinked. The next task asks the students to try to describe the remaining parts of the graph and they can assess against displayed mark schemes. The final part of the lesson looks at the two terminal velocities that they were during the skydive and explains that the increased surface area after the parachute was opened led to the second velocity being lower. The last task challenges the students to use this knowledge to answer a difficult exam question. It has been differentiated so those students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Thermistors and LDRs
GJHeducationGJHeducation

Thermistors and LDRs

(0)
This lesson has been designed to help students to explain the relationship between current and resistance in thermistors and LDRs. This can be a topic which students do not engage with or understand well, so this lesson has tried to add engagement with useful tips to deepen their knowledge. A number of quick competitions are used to introduce key terms such as semiconductor and then the key points explained. Students are given an exemplary answer for the thermistor so they can see how their work should be set out when trying to explain the graph produced by a LDR. Progress checks have been written into the lesson at regular intervals so that students can assess their understanding and any misconceptions can be addressed. This lesson has been designed for GCSE students.
Background radiation
GJHeducationGJHeducation

Background radiation

(0)
An engaging lesson which uses a range of tasks to ensure that students understand the meaning of the term, background radiation, and are able to name a number of sources of this type of radiation. The start of the lesson focuses on the definition of background radiation and the idea that is all around us is revisited again a number of times during the lesson. Through a range of activities and discussion points, students will meet the different sources as well as the % that they each contribute. It seemed appropriate to challenge some mathematical and scientific skills at this point so students will represent the data in a pie chart form. Related topics are discussed such as Chernobyl. Progress checks are written into the lesson at regular intervals so the students can constantly assess their understanding. This lesson is designed for GCSE students.
Series and Parallel circuits
GJHeducationGJHeducation

Series and Parallel circuits

(0)
A fully-resourced lesson that explores how resistance, current and potential difference differ between series and parallel circuits. This knowledge needs to be sound in order for students to be able to carry out circuit calculations. The lesson includes a practical and task-based lesson presentation (24 slides) and an accompanying worksheet. The lesson begins by challenging the students to recognise the key difference between the two circuits, in that in a parallel circuits, the electrons can follow more than one route. Moving forwards, each physical factor is investigated in each type of circuits and students carry out tasks or calculations to back up any theory given. Helpful analogies and hints are provided to guide the students through this topic which is sometimes poorly understood. Students will be challenged to use the V = IR equation on a number of occasions so that they are comfortable to find out any of these three factors. Progress checks have been written into the lesson at regular intervals so that students are constantly assessing their understanding and any misconceptions can be addressed. This has been written for GCSE students, but could be potentially used with higher ability KS3 students.
Contact and non-contact FORCES
GJHeducationGJHeducation

Contact and non-contact FORCES

(0)
An engaging and informative lesson presentation (49 slides) looks at the differences between contact and non-contact forces and focuses on enabling students to describe and recognise them. This lesson has been written for GCSE students but could be used in higher ability KS3 lessons with students who are looking to progress their knowledge. The lesson begins by introducing the fact that forces can be grouped into these two categories and initial definitions are used to ease the students into the lesson. To follow on from this a competition called “FORCE it together” is used. This engaging game challenges the students to spot the name of a force which is in anagram form and then once it has been identified, they have to determine whether it would be a contact or non-contact force. As each force is met, key details are given and discussed. More time is given to areas which can cause problems for students, such as the use of weight and gravity force and whether they are actually different. Moving forwards, a rugby tackle is used to show the numerous forces that interact in everyday situations, before students are challenged to identify more forces in sports of their choice. Students will recall/learn that force is a vector quantity and therefore is represented in diagrams using arrows. Once again, this lesson focuses on showing them how these arrows can be used differently with the different types of forces. Students are briefly introduced to the idea of a free body diagram and an understanding check is used to see whether they can identify friction, gravity force and normal contact force from the arrows. Progress checks like this are written into the lesson at regular intervals, in a range of formats, so that students are constantly assessing their understanding. The final part of the lesson is one more quick competition where students have to use their knowledge of the forces to form words.
Conservation of energy and energy stores
GJHeducationGJHeducation

Conservation of energy and energy stores

(0)
A fully-resourced lesson that includes a detailed and engaging lesson presentation (33 slides) and question worksheets which are diifferentiated. Together these resources guide students through the tricky topic of the conservation of energy by transfers between energy stores which can often be poorly understood. This lesson has been written for GCSE students, but the law can be taught from an earlier age so this would be suitable for higher ability KS3 lessons. The lesson begins by introducing the key term, energy stores. The understanding of this term is critical for this topic and other lessons on energy transfers and therefore some time is taken to ensure that this key points are embedded into the lesson. Students will learn that stores can be calculated due to the fact that they have an equation associated with them and some of these need to be recalled (or applied) at GCSE. Therefore, the first part of the lesson involves two engaging competitions where students are challenged to recall part of an energy store equation or to recognise which energy store an equation is associated with. Students are given the information about the remaining energy stores, such as chemical and electrostatic. Moving forwards, the main part of the lesson explores the law of the conservation of energy and shows students how they need to be able to apply this law to calculation questions. Students are shown how to answer an example question involving the transfer of energy from a gravity store to a kinetic energy store. A lot of important discussion points come up in this calculation, such as resistive forces and the dissipation of energy, so these are given the attention they need. Students are then challenged to apply their knowledge to a calculation question on their own - this task has been differentiated two ways so that all students can access the learning. The final slide of the lesson looks at the different ways that energy can be transferred between stores but those are covered in detail in separate lessons.
Specific latent heat
GJHeducationGJHeducation

Specific latent heat

(0)
A fast-paced lesson presentation (20 slides) which focuses on the understanding of the scientific term, specific latent heat, and guides students through use of the related equation in energy calculations. This lesson has been written for GCSE students and along with specific heat capacity, these are topics which students regularly say that they do not understand so the aim here has been to embed the key details. The task at the start of the lesson gets students to plot the changing state line for pure water. They have to annotate the line to show the changes in state and then most crucially recognise that when these changes in state occur, there is no change in temperature. Moving forwards, students will meet the additional terms of fusion and vaporisation and then be introduced to the equation. They are reminded that this isn’t an equation that they have to recall, but are expected to apply it and therefore the next few slides focus on the potential difficulties that could be encountered. These include the conversion between units and a mathematical skills check is included at this point so that their ability to move between grams and kilograms and Joules and kiloJoules is tested. Progress checks like this are written into the lesson at regular intervals so the students can constantly assess their understanding.
The BIG BANG Theory
GJHeducationGJHeducation

The BIG BANG Theory

(0)
A short, concise lesson presentation (25 slides) that explores the key evidence that is used to support the Big Bang Theory. This lesson has been written for GCSE students with the focus on the fine details which they need to be able to understand in order to successfully answer exam questions on this topic. The lesson begins with a fun slide which challenges their mathematical skills to work out a number of years and spot that a dingbat represents the Big Bang. This leads students into the key details of the theory and includes when it was believed to have happened. The rest of the lesson focuses on two main pieces of evidence, namely red shift and CMBR. Students are guided through these topics and related topics such as the Doppler effect are revisited. The final part of the lesson uses a quick competition to get students to recognise the names of alternative theories and a set homework challenges them to add details in terms of evidence to support each of steady state and creationism.
Health and disease
GJHeducationGJHeducation

Health and disease

(0)
A fast-paced lesson that explores the meaning of “health” and introduces the idea of communicable and non-communicable diseases. The lesson begins by showing the students an example of a health survey so they can complete a definition of the meaning of this term. Despite being widely used in the English language, the actual Scientific definition is not always well known by students so this 1st task is an important one. Moving forwards, students are given 5 minutes to see if they can fill an A-Z with the names of different diseases. Students will learn that diseases can be grouped as communicable or non-communicable and will be encouraged to discuss what the determining factor is on this classification. A quiz competition called “TO COM or NOT TO COM” is a play on words of Shakespeare’s famous saying but acts to test whether the students can distinguish a number of diseases as being spread by pathogens or not. After each disease is revealed, time is taken to look at the details of some of them like cystic fibrosis and the zika virus. The lesson concludes with the example of the human-papilloma virus and the connection between this and cervical cancer so that students can recognise that sometimes both types of disease are involved. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but could be used with younger students who are looking at the healthy living topic.
Controlling body temperature
GJHeducationGJHeducation

Controlling body temperature

(0)
A fully-resourced lesson which includes a detailed and engaging lesson presentation (36 slides) and an assistance worksheet for those students who feel that they need extra assistance with the final description. This lesson looks at how body temperature is controlled in humans through a homeostatic mechanism and includes details of a negative feedback loop. The lesson begins with a three pronged task where students have to use the clues to come up with the word homeostasis and the number 37 and then see if they can make the link in the human body. Time is taken to ensure that students recognise why maintaining the temperature around this set-point is so crucial in terms of the effectiveness of enzymes in reactions. There is a real focus on key terminology throughout such as thermoreceptors and hypothalamus and guidance is given on how to use these terms accurately. Discussion points and progress checks are written into the lesson at regular intervals so that students are encouraged to challenge the Biology whilst being able to assess their understanding. They are shown how to write a detailed description of the response to an increase in temperature so they are able to form their own description of the response to a fall in temperature. This lesson has been written for GCSE students but is perfectly suitable for older students studying thermoregulation at A-level and want to revisit the knowledge.
Efficiency of biomass transfer
GJHeducationGJHeducation

Efficiency of biomass transfer

(0)
An informative lesson that looks at how energy is lost at each stage of a food chain and how this affects the biomass of consumers. This lesson has been written for GCSE students but could be used with A-level students who are revisiting this ecology topic. The lesson begins by posing a question to the students about why herbivores tend to be raised for food rather than carnivores to see how they would tackle it at this early stage. This exact question is revisited at the end of the lesson once learning has occurred so that students can monitor their own progress. Time is taken to look back at pyramids of biomass and food chains so that students are reminded of key terminology such as trophic level and also recognise that the biomass decreases at each level. A number of quick competitions have been written into the lesson to maintain engagement but also to introduce key terms and numbers (like 10%) in a different way. The main part of the lesson looks at how the energy is lost by organisms that leads to the decrease in biomass and links are made to related topics such as respiration and homeostasis.
Controlling blood glucose concentration
GJHeducationGJHeducation

Controlling blood glucose concentration

(0)
This engaging lesson guides students through the homeostatic control mechanism which is involved in controlling blood glucose concentrations and focuses on the critical interconversion between glucose and glycogen which is often poorly understood. The lesson begins by introducing glucose and ensuring that students recognise that this is a simple sugar which is critical for respiration. Links are made here and throughout the lesson to relateable topics such as the endocrine system so that students can recognise how exam questions will often encompass more than one topic. Students are challenged to recall knowledge about the pancreas and its release of insulin into the blood to travel to the liver. A quick competition is then used to maintain engagement and to introduce glycogen. Due to the large number of words beginning with g that are involved in this topic, time is taken to describe the role of glycogen so that it is not mistaken for glucose or glucagon. Students will learn how the conversion from glucose to glycogen and also the other way round is critical to how the concentration is controlled. The main student tasks involve them completing a partially finished passage about responding to an increase in blood glucose concentration and then using this as a guide to write their own full versions for when concentrations are low. These are just two of a number of progress checks that are written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but could be used for A-level lessons that are recapping on this topic before extra knowledge is added at this higher level
Temperature and the position of equilibrium
GJHeducationGJHeducation

Temperature and the position of equilibrium

(0)
This lesson explores how the temperature affects the position of equilibrium in a reversible reaction. This can be a difficult topic for students to understand and therefore the aim has been on the key details. The lesson begins by challenging the students to recall the rules of a dynamic equilibrium in order to recognise how if the equilibrium position changes then so do the concentrations. Links are made during the lesson to related topics such as endothermic and exothermic reactions and some time is taken to go back over calculating energy changes so that the type of reaction can be determined. The forward reaction in the Haber process is used as the example so students can see how an increase in temperature in this exothermic reaction would lead to a decrease in the yield of ammonia. Students are then challenged to use this example to explain how a decrease in temperature would affect the production of methanol. This worksheet is differentiated so students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Topic B2:  Scaling up (OCR Gateway A GCSE Combined Science & GCSE Biology)
GJHeducationGJHeducation

Topic B2: Scaling up (OCR Gateway A GCSE Combined Science & GCSE Biology)

13 Resources
This bundle of 13 lessons covers the majority of the content in Topic B2 (Scaling Up) of the OCR Gateway A GCSE Combined Science & GCSE Biology specifications. The topics covered within these lessons include: Mitosis Cell differentiation Cell specialisation Stem cells Diffusion Osmosis Active transport Exchange surfaces The heart in the circulatory system The blood and blood vessels Plant transport systems Transpiration All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.