Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1122k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Passive transport (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Passive transport (Edexcel Int. A-level Biology)

(0)
This lesson describes how molecules move across cell membranes by passive transport, as exemplified by simple and facilitated diffusion. The PowerPoint and accompanying resource have been designed to cover the first part of specification point 2.5 of the Edexcel International A-level Biology specification and the factors that increase the rate of diffusion are covered along with the limitations imposed by the phospholipid bilayer and the role of channel and carrier proteins The structure and properties of cell membranes were described in the lesson covering 2.2, so this lesson has been written to include continual references to the content of that lesson. This enables links to be made between the movement across a cell membrane with the concentration gradient, the parts of the membrane that are involved and any features that may increase the rate at which the molecules move. A quick quiz competition challenges students to recall Fick’s law of diffusion and a series of questions and tasks are used to demonstrate how a large surface area, a short diffusion distance and the maintenance of a steep concentration gradient will increase the rate of simple diffusion. Another quick quiz round is then used to introduce temperature and size of molecule as two further factors that can affect simple diffusion. The remainder of the lesson focuses on facilitated diffusion and describes how transmembrane proteins are needed to move small, polar or large molecules from a high concentration to a lower concentration across a partially permeable membrane
Diffusion (Edexcel A-level Biology B)
GJHeducationGJHeducation

Diffusion (Edexcel A-level Biology B)

(0)
This lesson describes how passive transport is brought about (simple) diffusion and facilitated diffusion. The PowerPoint and accompanying resources have been designed to cover the first part of specification point 4.2 (ii) of the Edexcel A-level Biology B specification but also covers 4.2 (iii) as the relationship between the properties of a molecule and the method by which they are transported is discussed. The structure of the cell surface membrane was described in the previous lesson, so this lesson has been written to include continual references to the content of that lesson. This enables links to be made between the movement across a cell membrane with the concentration gradient, the parts of the membrane that are involved and any features that may increase the rate at which the molecules move. A series of questions about the alveoli are used to demonstrate how a large surface area, a short diffusion distance and the maintenance of a steep concentration gradient will increase the rate of simple diffusion. One of two quick quiz rounds is then used to introduce temperature and size of molecule as two further factors that can affect simple diffusion. The remainder of the lesson focuses on facilitated diffusion and describes how transmembrane proteins are needed to move small, polar or large molecules from a high concentration to a lower concentration across a partially permeable membrane
Sampling plant species (OCR A-level Biology A)
GJHeducationGJHeducation

Sampling plant species (OCR A-level Biology A)

(0)
This lesson describes how random and non-random sampling strategies can be carried out to measure the biodiversity of a habitat. The PowerPoint and accompanying worksheets are part of the first lesson in a series of 2 which have been designed to cover the content of point 4.2.1 (b) (i) of the OCR A-level Biology A specification and this lesson specifically focuses on sampling plant species. The second lesson covers the sampling of animal species using apparatus such as pooters and sweeping nets. The lesson begins with a challenge, where the students have to recognise the terms random and stratified from descriptions that were met in modules 2.1.6 and 3.1.1. This introduces the concept of sampling and emphasises its importance in the measurement of biodiversity and the students will learn that there is random sampling as well as non-random sampling, and that one of these strategies is known as stratified. The next part of the lesson focuses on the random sampling of a habitat where the results found with a quadrat are used to estimate the population of sessile species like plants. Due to the heavy mathematical content in the A-level Biology exams, a step by step guide is used to walk the students through the key stages in these calculations and includes the extra steps needed when the quadrat does not have an area of 1 metre squared. A series of exam-style questions will then challenge them to apply their understanding and mark schemes are embedded in the PowerPoint to allow them to immediately assess their progress. The use of quadrats that have been divided into 100 squares and point frames to estimate percentage ground cover are also discussed and the overall advantages and disadvantages of random sampling are considered. Moving forwards, the stratified, opportunistic and systematic strategies of non-random sampling are discussed and again the advantages and disadvantages of all three are considered. Time is taken to focus on line and belt transects and students will learn that the latter can be particularly useful when an abiotic factor appears to change across a habitat.
ULTRAFILTRATION (OCR A-level Biology A)
GJHeducationGJHeducation

ULTRAFILTRATION (OCR A-level Biology A)

(0)
This detailed lesson has been written to cover the part of specification point 5.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the process of ultrafiltration. The aim of the design was to give the students the opportunity to discover this particular function and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other 5.1.2 kidney lessons on the structure of the nephron, selective reabsorption, osmoregulation and kidney failure
The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)
GJHeducationGJHeducation

The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)

(0)
This is a highly-detailed and fully-resourced lesson which covers the detail of specification point 5.1.2 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the roles of the hypothalamus, posterior pituitary, ADH and the collecting duct in the control of the water potential of the blood. Students learnt about the principles of homeostasis and negative feedback in an earlier module, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work. This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other uploaded lessons in module 5.1.2 which include the structure of the nephron, ultrafiltration and selective reabsorption.
The need for cellular respiration (OCR A-level Biology)
GJHeducationGJHeducation

The need for cellular respiration (OCR A-level Biology)

(0)
This fully-resourced lesson uses real-life examples in plants and animals to explain why cellular respiration is so important. The PowerPoint and accompanying resources have been designed to cover point 5.2.2 (a) of the OCR A-level Biology A specification but can also be used as a revision tool to challenge the students on their knowledge of active transport, nervous transmission and muscle contraction. As the first lesson in this module, it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Students met phosphorylation in module 5.2.1 when considering the light-dependent reactions of photosynthesis and their knowledge of the production of ATP in this plant cell reaction is called on a lot in this lesson to show the similarities. The students are also tested on their recall of the structure and function of ATP, as covered in module 2.1.3, through a spot the errors task. By the end of the lesson, the students will be able to explain why the ATP produced in cellular respiration is needed by root hair cells, by companion cells and in the selective reabsorption of glucose in the proximal convoluted tubule. They will also be able to name and describe the different types of phosphorylation and will know that ATP is produced by substrate-level phosphorylation in glycolysis and the Krebs cycle and by oxidative phosphorylation in the final stage of aerobic respiration with the same name.
Mitosis and its significance (OCR A-level Biology A)
GJHeducationGJHeducation

Mitosis and its significance (OCR A-level Biology A)

(0)
This fully-resourced lesson describes the main stages of mitosis and explains the significance of this type of nuclear division in life cycles. The PowerPoint and accompanying resources have been designed to cover points 2.1.6 (c & e) of the OCR A-level Biology A specification and make direct links to the previous lesson which covered the cell cycle Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson so that existing errors are addressed and key points are emphasised throughout. Their understanding of interphase is challenged at the start of the lesson to ensure that they realise that it is identical pairs of sister chromatids that enter the M phase. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. There is a focus on the centrioles and the spindle fibres that they produce which contract to drag one chromatid from each pair in opposite directions to the poles of the cell. The remainder of the lesson is a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final quiz round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.
Cell membrane structure (OCR A-level Biology)
GJHeducationGJHeducation

Cell membrane structure (OCR A-level Biology)

(0)
This detailed lesson describes the fluid mosaic model of membrane structure and also describes the roles of its components. The detailed and engaging PowerPoint and accompanying worksheets have been designed to cover specification point 2.1.5 (b) of the OCR A-level Biology A specification and clear links are made to related topics such as the binding of peptide hormones The fluid mosaic model is introduced at the start of the lesson so that it can be referenced at appropriate points throughout the lesson. Students were introduced to phospholipids in module 2.1.2 and an initial task challenges them to spot the errors in a passage describing the structure and properties of this molecule. This reminds them of the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are used and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
Active transport, endocytosis & exocytosis (OCR A-level Biology)
GJHeducationGJHeducation

Active transport, endocytosis & exocytosis (OCR A-level Biology)

(0)
This fully-resourced lesson describes the movement of molecules by active transport, endocytosis and exocytosis, which are all active process that require ATP. The PowerPoint and accompanying worksheets have been designed to cover the second part of point 2.1.5 (d) [i] of the OCR A-level Biology A specification. The first part of this specification point, concerning simple and facilitated diffusion, was covered in the previous lesson. The start of the lesson challenges the students to use their prior knowledge of biological molecules to come up with the abbreviation ATP. Students were introduced to this molecule in module 2.1.3, so a series of prior knowledge questions are used to check on their recall of the structure and properties of ATP. Students are also reminded that the hydrolysis of ATP can be coupled to energy-requiring reactions within the cell and the rest of the lesson focuses on the use of this energy input for active transport, endocytosis and exocytosis. Students are challenged to answer a series of questions which compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The lesson concludes with a link to a future topic as the students are shown how exocytosis is involved in a synapse.
Active & passive immunity & vaccinations (CIE A-level Biology)
GJHeducationGJHeducation

Active & passive immunity & vaccinations (CIE A-level Biology)

(0)
This fully-resourced lesson distinguishes between active and passive, natural and artificial immunity and explains how vaccinations can be used to control disease. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 11.2 (d) of the CIE A-level Biology specification and there is also a description and discussion on the concept of herd immunity. In topic 11.1, students were introduced to the primary and secondary immune responses so the start of this lesson uses an imaginary game of TOP TRUMPS to challenge them on the depth of their understanding. This will act to remind them that a larger concentration of antibodies is produced in a quicker time in the secondary response. The importance of antibodies and the production of memory cells for the development of immunity is emphasised and this will be continually referenced as the lesson progresses. The students will learn that this response of the body to a pathogen that has entered the body through natural processes is natural active immunity. Moving forwards, time is taken to look at vaccinations as an example of artificial active immunity. Another series of questions focusing on the MMR vaccine will challenge the students to explain how the deliberate exposure to antigenic material activates the immune response and leads to the retention of memory cells. A quick quiz competition is used to introduce the variety of forms that the antigenic material can take along with examples of diseases that are vaccinated against using these methods. The eradication of smallpox is used to describe the concept of herd immunity and the students are given time to consider the scientific questions and concerns that arise when the use of this pathway is a possible option for a government. The remainder of the lesson looks at the different forms of passive immunity and describes the drawbacks in terms of the need for a full response if a pathogen is re-encountered
Temperature & enzyme activity (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Temperature & enzyme activity (Edexcel Int. A-level Biology)

(0)
This lesson explains the effects of temperature on the rate of enzyme activity and describes how to calculate the temperature coefficient. The PowerPoint and the accompanying resources have been designed to cover point 5.21 of the Edexcel International A-level Biology specification and this lesson has been specifically planned to tie in with a lesson in topic 2 where the roles and mechanism of action of enzymes were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in modules 6 and 5. Moving forwards, the next part of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. The final part of the lesson introduces the Q10 temperature coefficient and students are challenged to apply this formula to calculate the value for a chemical reaction and a metabolic reaction to determine that enzyme-catalysed reactions have higher rates of reaction
Edexcel GCSE Combined Science Topic P3 REVISION (Conservation of energy)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P3 REVISION (Conservation of energy)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P3 (Conservation of energy) of the Edexcel GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Recall and use the equation to calculate the change in gravitational potential energy Recall and use the equation to calculate the change in kinetic energy of a moving object Explain what is meant by the conservation of energy Analyse the way energy is stored when a system changes Explain how mechanical processes become wasteful Explain ways of reducing unwanted energy transfer Recall and use the equation to calculate efficiency Describe the main energy sources available for use on Earth Explain patterns and trends in the use of energy resources Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
AQA GCSE Combined Science Paper 6 REVISION (Physics Topics P5 - P7)
GJHeducationGJHeducation

AQA GCSE Combined Science Paper 6 REVISION (Physics Topics P5 - P7)

(0)
This is a fully-resourced revision lesson that could be used over a series of lessons to help students to revise and assess their knowledge of the content that is found in topics P5 (Forces), P6 (Waves) and P7 (Magnetism and electromagnetism) of the AQA GCSE Combined Science specification and will be assessed in Paper 6 This revision lesson uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to cover the following sub-topics and specification points: Scalar and vector quantities Contact and non-contact forces Gravity Work done and energy transfer Forces and elasticity Speed Velocity Acceleration Newton’s laws of motion Momentum Conservation of momentum Transverse and longitudinal waves Properties of waves The EM waves Fleming’s left-hand rule This lesson contains a big emphasis on the mathematical calculations that will be involved in these exams, and as a result students are challenged to recall the equations and to apply them. Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams. A lot of the tasks have been differentiated so that students of all abilities can access the work and be challenged appropriately.
Edexcel GCSE Combined Science Topic P6 REVISION (Radioactivity)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P6 REVISION (Radioactivity)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P6 (Radioactivity) of the Edexcel GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Describe the structure of an atom, including the charge and mass of the subatomic particles Describe the structure of nuclei of isotopes Be able to explain why an atom is neutral Recall the radiation that can be emitted from an unstable nucleus Explain what is meant by background radiation and know the origins of this radiation Recall that an alpha particle is equivalent to a helium nucleus Compare alpha, beta and gamma radiations in terms of their abilities to penetrate and ionise Describe the processes of beta plus and beta minus decay Explain the effects on the atomic and mass number of radioactive decays Balance nuclear decay equations Recall that the unit of activity of a radioactive isotope is the Becquerel Use the concept of half life to carry out simple calculations Describe the differences between contamination and irradiation Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
CIE IGCSE Physics Topic 1 REVISION (General Physics)
GJHeducationGJHeducation

CIE IGCSE Physics Topic 1 REVISION (General Physics)

(0)
This is an engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (General Physics) of the CIE IGCSE Physics (0625) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: CORE Define speed and calculate average speed from total distance divided by total time Plot and interpret a speed-time graph or a distance-time graph Recognise from the shape of a speed-time graph when a body is at rest, moving at a constant speed or changing speed Calculate the area under a speed-time graph to work out the distance travelled for motion with constant acceleration Show familiarity with the idea of the mass of a body State that weight is a gravitational force Distinguish between mass and weight Recall and use the equation W = mg Recall and use the equation density = mass divided by volume Understand friction as the force between two surfaces which impedes motion and results in heating Calculate moment using the product force × perpendicular distance from the pivot Identify changes in kinetic, gravitational potential, chemical, elastic (strain), nuclear and internal energy that have occurred as a result of an event or process Recognise that energy is transferred during events and processes, including examples of transfer by forces (mechanical working), by electrical currents (electrical working), by heating and by waves Apply the principle of conservation of energy to simple examples Describe how electricity or other useful forms of energy may be obtained from a range of sources Show a qualitative understanding of efficiency Demonstrate understanding that work done = energy transferred Relate (without calculation) power to work done and time taken, using appropriate examples SUPPLEMENT Distinguish between speed and velocity Define and calculate acceleration Understand deceleration as a negative acceleration Describe, and use the concept of, weight as the effect of a gravitational field on a mass State Hooke’s Law and recall and use the expression F = k x, where k is the spring constant Apply the principle of moments to different situations Understand that vectors have a magnitude and direction The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Are you the KING of the KINGDOMS” where they have to name the kingdoms involved based on a feature whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual IGCSE exam
OCR Gateway A GCSE Combined Science REVISION:  Units B1 - 3
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science REVISION: Units B1 - 3

(0)
A fun and highly engaging lesson presentation (37 slides) and associated worksheets that combines exam questions and progress checks along with competition rounds to enable students to assess their understanding of the specification content within units B1 - 3 of the OCR Gateway A 9 - 1 GCSE Science. All of the exam questions and progress checks have displayed answers as well as sections where content is recapped so that students can understand how an answer was obtained. The revision rounds in the competition include “Blockbusters”, “Doctor, Doctor” and “Crack the CODE”. This lesson has been designed for GCSE students.
OCR Gateway A GCSE Chemistry C6 (Global challenges) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Chemistry C6 (Global challenges) REVISION

(0)
An engaging lesson presentation (79 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C6 (Global Challenges) of the OCR Gateway A GCSE Chemistry specification. The topics that are tested within the lesson include: Making ethanol Extracting metals Extracting iron Extracting aluminium Alloys Alkanes Alkenes Alcohols Carboxylic acids Polymers Water for drinking Students will be engaged through the numerous activities including quiz rounds like “It’s time for ACTION” and “Are YOU on FORM” whilst crucially being able to recognise those areas which need further attention
Development of the ATOM
GJHeducationGJHeducation

Development of the ATOM

(0)
An informative lesson presentation (44 slides) that looks at the work of the key Scientists involved in the development of the atomic model. Dalton, Thomson, Rutherford and Bohr were four men whose work has led to the changes in the atomic model over the years and this lesson looks at parts of each of their work. There is a focus on Rutherford’s work with the alpha particles and students are challenged to draw conclusions based on the deflections they are shown. There is lots of time written into the lesson for consolidation and regular progress checks ensure that students have the opportunity to assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who perhaps are carrying out a project on the atom and want to add detail to their work
Potential difference
GJHeducationGJHeducation

Potential difference

(0)
This is a fully-resourced lesson that has been written for GCSE students and focuses on the meaning of the term, potential difference, and guides students through using this factor in calculations. A range of student-led tasks will challenge the students to recognise how a voltmeter needs to be set up to measure the potential difference and then gets them to use the readings to calculate other factors. Their mathematical skills will be tested throughout and students will be asked to analyse their answers and study a series circuit to learn the key rule about potential difference in these types of circuits. Progress checks have been written into the lesson at regular intervals so students are constantly assessing their understanding.
Waves in matter REVISION (Topic 5 OCR GCSE Physics)
GJHeducationGJHeducation

Waves in matter REVISION (Topic 5 OCR GCSE Physics)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within topic 5 (Waves in matter) of the OCR Gateway A GCSE Physics specification. The sub-topics and specification points that are tested within the lesson include: Recall and apply the equation to calculate wave speed using frequency and wavelength Describe wave motion in terms of amplitude, frequency, wavelength and period Define wavelength and frequency and be able to describe and apply the relationship between these and the wave velocity Describe differences between transverse and longitudinal waves Describe reflection and transmission of waves at material interface Understand how waves are used in ultrasound and SONAR Be able to describe how a ripple tank can be used to measure the speed of a wave The electromagnetic spectrum Use ray diagrams to show refraction This revision lesson has been designed to include the wide variety of mathematical skills that are tested in the Physics exam papers including rearranging formula, converting to S.I. units and calculating using standard form. Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams