Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Action potential (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Action potential (Edexcel Int. A-level Biology)

(0)
This lesson explains how a nerve impulse (action potential) is conducted along an axon and focuses on the role of the sodium and potassium ions. The PowerPoint and accompanying resources have been designed to cover point 8.4 of the Edexcel International A-level Biology specification and contains detailed descriptions of resting potential, depolarisation, repolarisation, hyperpolarisation and the refractory period. This topic is commonly assessed in the terminal exams so extensive planning ensures that this resource includes a wide range of activities to motivate and engage the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells.
Kidney failure and its potential treatments (WJEC A-level Biology)
GJHeducationGJHeducation

Kidney failure and its potential treatments (WJEC A-level Biology)

(0)
This fully-resourced lesson describes the range of potential treatments for kidney failure. The PowerPoint and accompanying resources have been designed to cover specification point (h) in topic 7 of A2 unit 3 of the WJEC A-level Biology specification. This lesson involves the diagnosis of a number of different kidney-related conditions and the potential treatments for kidney failure. This lesson is designed to get the students to take on the numerous roles of a doctor who works in the renal ward which include testing, diagnosis and treatment. Having obtained measurements by GFR and results by taking urine samples, hey are challenged to use their knowledge of the function of the kidney to study urine samples (and the accompanying GP’s notes) to diagnose one of four conditions. They then have to write a letter to the patient to explain how they made this diagnosis, again focusing on their knowledge of the structure and functions of the Bowman’s capsule and PCT. The rest of the lesson focuses on haemodialysis, peritoneal dialysis and kidney transplant. There are regular progress checks throughout the lesson so that students can assess their understanding and there are a number of homework activities included in the lesson.
Chi squared test (WJEC A-level Biology)
GJHeducationGJHeducation

Chi squared test (WJEC A-level Biology)

(0)
This lesson guides students through the use of a chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated worksheets that have been designed to cover point (d) in topic 3 of A2 unit 4 of the WJEC A-level Biology specification The lesson includes a step-by-step guide to demonstrates how to carry out the test in small chunks. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty. This lesson has been specifically designed to tie in with the previous lessons in this topic as there are regular references to dihybrid inheritance as well as to topics in the AS units like meiosis
Osmosis and the effect on cells (CIE International A-level Biology)
GJHeducationGJHeducation

Osmosis and the effect on cells (CIE International A-level Biology)

(0)
This detailed lesson describes how the movement of water between solutions and cells has differing effects on animal and plant cells. Both the PowerPoint and accompanying resources have been designed to cover specification points 4.2 (a) and (f) as detailed in the CIE International A-level Biology specification. It’s likely that students will have used the term concentration in their osmosis definitions at GCSE, so the aim of the starter task is to introduce water potential to allow students to begin to recognise osmosis as the movement of water molecules from a high water potential to a lower potential, with the water potential gradient. Time is taken to describe the finer details of water potential to enable students to understand that 0 is the highest value (pure water) and that this becomes negative once solutes are dissolved. Exam-style questions are used throughout the lesson to check on current understanding as well as prior knowledge checks which make links to previously covered topics such as the lipid bilayer of the cell membrane. The remainder of the lesson focuses on the movement of water when animal and plant cells are suspended in hypotonic, hypertonic or isotonic solutions and the final appearance of these cells is described, including any issues this may cause.
Mitosis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Mitosis (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the events of the cell cycle so that students can understand how the genetic material behaves in interphase, mitosis and cytokinesis. The detailed PowerPoint and accompanying resources have been designed to cover specification points 2.3 (i), (ii) and (iii) as detailed in the Edexcel A-level Biology B specification. Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis and the cell cycle will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson and to address existing errors, key points are emphasised throughout. The cell cycle is introduced at the start of the lesson and the quantity of DNA inside the parent cell is described as diploid and as 2n. A quiz competition has been written into the lesson and this runs throughout, challenging the students to identify the quantity of DNA in the cell (in terms of n) at different points of the cycle. Moving forwards, the first real focus is interphase and the importance of DNA replication is explained so that students can initially recognise that there are pairs of identical sister chromatids and then can understand how they are separated later in the cycle. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. An exam style question will check on their knowledge of the organelles from 2.1 and this acts to remind them that centrioles are responsible for the production of the spindle apparatus, Students will understand how the cytoplasmic division that occurs in cytokinesis results in the production of genetically identical daughter cells. This leads into a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture
The importance of water (WJEC A-level Biology)
GJHeducationGJHeducation

The importance of water (WJEC A-level Biology)

(0)
This detailed lesson describes the properties of water to demonstrate the importance of this molecule for living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point (b) of AS unit 1, topic 1 of the WJEC A-level Biology course and has been specifically designed to ensure that each role is illustrated using a specific example. As this is only the second lesson in the biological compounds topic, which is a topic that students tend to find difficult or potentially less engaging, the planning has centred around the inclusion of a wide variety of tasks to cover the content whilst maintaining motivation and engagement. These tasks include current understanding and prior knowledge checks, discussion points and quick quiz competitions to introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: polarity ability to form hydrogen bonds surface tension as a solvent thermal properties as a metabolite The final part of the lesson introduces condensation and hydrolysis reactions and students will learn that a clear understanding of these reactions is critical as they will reappear throughout the topic in the synthesis and breakdown of biological compounds
Contraction of skeletal muscle (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Contraction of skeletal muscle (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the process of contraction of skeletal muscle in terms of the sliding filament theory. The PowerPoint and accompanying resources have been designed to cover point 7.11 of the Edexcel International A-level Biology specification and includes descriptions of the role of actin, myosin, troponin, tropomyosin, calcium ions, ATP and ATPase. The lesson begins with a study of the structure of the thick and thin filaments. Students will recognise that the protruding heads of the myosin molecule are mobile and this enables this protein to bind to the binding sites when they are exposed on actin. This leads into the introduction of troponin and tropomyosin and key details about the binding of calcium to this complex is explained. Moving forwards, students are encouraged to discuss possible reasons that can explain how the sarcomere narrows during contraction when the filaments remain the same length. This main part of the lesson goes through the main steps of the sliding filament model of muscle contraction and the critical roles of the calcium ions and ATP are discussed. The final task of the lesson challenges the students to apply their knowledge by describing the immediate effect on muscle contraction when one of the elements doesn’t function correctly. This lesson has been written to tie in with the previous lesson on the structure of skeletal muscle fibre (point 7.10)
Topic C3.4: Electrolysis (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C3.4: Electrolysis (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers the majority of the content in the sub-topic C3.4 (Electrolysis) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include: Recall that metals are formed at the cathode and non-metals are formed at the anode Predict the products of the electrolysis of ionic compounds in molten state Describe competing reactions in the electrolysis of aqueous solutions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Excretion
GJHeducationGJHeducation

Excretion

(0)
This is an engaging and informative lesson that looks at the meaning of excretion in detail and explores the functions of the organs involved with the excretion of carbon dioxide and urea. This lesson has been designed for students studying A-level Biology. The lesson begins by introducing the definition of excretion to the students so that they are able to recognise that the substances being removed have to have come from a metabolic process in order to be excreted. This important difference to egestion (elimination) is a key detail which they need to understand at this level. Moving forwards, a quick competition is used to meet some of the organs that are involved in excretion. The remainder of the lesson focuses on the excretion of carbon dioxide. Links are made to the transport of carbon dioxide as hydrogen carbonate ions and how the affinity of haemoglobin for oxygen is affected when the carbon dioxide concentration is high. Students will meet the idea of deamination and the ornithine cycle and the key details of these two processes are covered. Progress checks have been written into this lesson at regular intervals, which challenge the students on knowledge from this lesson and prior knowledge, to enable them to constantly assess their understanding.
Regulation of HR during exercise (OCR A-level PE)
GJHeducationGJHeducation

Regulation of HR during exercise (OCR A-level PE)

(0)
This fully-resourced lesson describes how the heart rate is regulated during exercise by the cardiovascular centre in the medulla oblongata. The engaging and detailed PowerPoint and accompanying resources, which are differentiated 3 ways, have been designed to cover the final specification point of the “Cardiovascular system during exercise” topic in unit 1.1.b of the OCR A-level PE specification. This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart which was covered in an earlier lesson in topic 1.1.b. This allows the SAN to be recalled as this structure plays an important role as the effector in this regulatory system. Moving forwards, the three key parts of a regulatory system are introduced as the next part of the lesson will specifically look at the range of sensory receptors, the regulatory centre and the effector. A quick quiz round is used to introduce a range of stimuli so that students can understand how chemoreceptors, proprioceptors and baroreceptors generate electrical impulses to be conducted along a neurone to the brain. Another quick quiz introduces the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions are compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the regulation and this task has been differentiated three ways to allow differing abilities to access the work
Synapses (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Synapses (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson has been designed to cover point 8.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification that states that students should know the structures and function of synapses in nerve impulse transmission. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters are considered to provide the students with a wider view of this topic and to make links to specification point 8.15 The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The final part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics.
PAPER 2 REVISION FOUNDATION TIER (OCR Combined Science)
GJHeducationGJHeducation

PAPER 2 REVISION FOUNDATION TIER (OCR Combined Science)

(0)
This is a fully-resourced lesson which uses exam-style questions, quiz rounds, quick tasks and discussion points to challenge students on their understanding of the content of topics B4 - B6, that will assessed on PAPER 2. It has been specifically designed for students on the OCR Gateway A GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to take place at the hospital and the students will visit the various wards and health clinics day to check on their knowledge of the following sub-topics : Cancer The production of gametes by meiosis The meaning of diploid and haploid Sex determination The difference between communicable and non-communicable diseases Diseases caused by bacteria, viruses, fungi and protists Treatment of bacterial infections using antibiotics Evolution by natural selection in bacteria Vaccinations Genetic terminology Inheritance of disorders caused by dominant and recessive alleles Risk factors of non-communicable diseases Ecosystems The carbon cycle and the increase in carbon dioxide levels In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as genetic diagrams and interpreting the results and evolution by natural selection. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 2 exam.
Maths in OCR GCSE Chemistry REVISION
GJHeducationGJHeducation

Maths in OCR GCSE Chemistry REVISION

(0)
This fully-resourced lesson has been written to prepare students for the range of mathematical-based questions that they may face on the two OCR GCSE Chemistry papers. The lesson has been designed to contain a wide range of activities which includes 8 quiz competition rounds spread across the duration of the lesson to maintain engagement whilst the students assess their understanding. The mathematical skills covered in this lesson include: Calculating the number of sub-atomic particles in atoms and ions Writing chemical formulae for ionic compounds Identifying isotopes Using Avogadro’s constant to calculate the number of particles Calculating the relative formula mass Calculating amount in moles using the mass and the relative formula mass Balancing chemical symbol equations Calculating reacting masses Gas calculations using molar volume Calculating concentration of solutions Titration calculations Deducing the empirical formula Calculating energy changes in reactions Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions This lesson could be used with higher ability students on the OCR GCSE Combined Science course by taking out the sections which are not applicable.
The significance of water (Edexcel A-level Biology B)
GJHeducationGJHeducation

The significance of water (Edexcel A-level Biology B)

(0)
This detailed lesson describes the importance of the dipole nature of water and its numerous properties to living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point 1.7 of the Edexcel A-level Biology B course and the intricate planning ensures that each role is illustrated using a specific example. As the final lesson in the biological molecules topic, not only does this lesson cover the important content related to water but also acts as a revision tool as it checks on key topic 1 content such as condensation and hydrolysis reactions. A wide range of tasks are used to check on current understanding and prior knowledge and quick quiz competitions introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: high specific heat capacity polar solvent surface tension incompressibility maximum density at 4 degrees Celsius
Ex situ conservation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Ex situ conservation (Edexcel A-level Biology B)

(0)
This lesson describes the principles of ex situ conservation and discusses the advantages and issues surrounding this method. The PowerPoint and accompanying worksheet are part of the second lesson in a series of 2 which have been designed to cover the content of point 3.3 (iii) of the Edexcel A-level Biology B specification and it closely ties in with the previous lesson on in situ conservation. To enrich their understanding of ex situ conservation, the well-known examples of ZSL London zoo, Kew Gardens and the Millennium Seed Bank Project in Wakehurst are used. Students will understand how conserving animal species outside of their natural habitat enables human intervention that ensures the animals are fed and given medical assistance when needed as well as reproductive assistance to increase the likelihood of the successful breeding of endangered species. As with the in situ method in the previous lesson, the issues are also discussed and there is a focus on the susceptibility of captive populations to diseases as a result of their limited genetic diversity. The final part of the lesson considers how seed banks can be used to ensure that plant species avoid extinction and how the plants can be bred asexually to increase plant populations quickly.
The main stages and significance of mitosis (WJEC A-level Biology)
GJHeducationGJHeducation

The main stages and significance of mitosis (WJEC A-level Biology)

(0)
This lesson describes the main stages of mitosis and explains the significance of this type of nuclear division for the daughter cells produced by the cycle. The PowerPoint and accompanying resources have been designed to cover points 6 (a & b) in topic 6 of AS unit 1 of the WJEC A-level Biology specification and the process of cytokinesis is also described. Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson so that existing errors are addressed and key points are emphasised throughout. Their understanding of interphase is challenged at the start of the lesson to ensure that they realise that it is identical pairs of sister chromatids that enter the M phase. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. There is a focus on the centrioles and the spindle fibres that they produce which contract to drag one chromatid from each pair in opposite directions to the poles of the cell. The remainder of the lesson is a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final quiz round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.
Meiosis (WJEC A-level Biology)
GJHeducationGJHeducation

Meiosis (WJEC A-level Biology)

(0)
This lesson describes the main stages of meiosis and has a specific focus on those events which contribute to genetic variation. The detailed PowerPoint and accompanying resources have been designed to cover point (d) in topic 6 of AS unit 1 of the WJEC A-level Biology specification and includes description of crossing over, independent assortment, independent segregation and the production of haploid gametes In order to understand how the events of meiosis like crossing over and independent assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent assortment and segregation of chromosomes and chromatids during metaphase I and II and anaphase I and II respectively results in genetically different gametes. The key events of all of the 8 phases are described and there is a focus on key terminology to ensure that students are able to describe genetic structures in the correct context. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam-style questions which challenge the students to apply their knowledge to potentially unfamiliar situations. This lesson has been specifically planned to lead on from the previous two lessons on the cell cycle and the main stages of mitosis and constant references are made throughout to encourage students to make links and also to highlight the differences between the two types of nuclear division
Protons, neutrons & electrons in atoms & ions (AQA GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Protons, neutrons & electrons in atoms & ions (AQA GCSE Chemistry & Combined Science)

(0)
This lesson explains how to calculate the number of protons, neutrons and electrons in atoms and ions when given the atomic and mass numbers. The PowerPoint and accompanying resources are part of the second lesson in a series of 3 lessons which have been designed to cover the content of specification points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry and Combined Science specifications. The lesson begins by challenging the students to put the chemical symbols for astatine, oxygen, iodine and carbon together to form the word atomic. Time is taken to explain the meaning of the atomic number and to emphasise how the number of protons in the nucleus is unique to atoms of that element. The students will learn that as the number of electrons is always the same as the number of protons in an atom, the atomic number can be used to calculate the numbers of both of these particles. Moving forwards, the mass number is considered and having been given the number of neutrons in a lithium atom, the students are challenged to articulate how the mass number and atomic number were used in this calculation. A series of worked examples are done as a class before the students are given the opportunity to challenge their understanding The remainder of the lesson focuses on ions and how the number of protons, neutrons and electrons are calculated in these substances. Initially, the students are challenged to use their knowledge of the charge of an atom to deduce that ions must have differing numbers of protons and electrons. The standard annotation for ions are introduced and explained and a series of exam questions are then used to check understanding. Mark schemes for each of these final questions is embedded into the PowerPoint and the worksheet has been differentiated two ways
Heart and circulatory system (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Heart and circulatory system (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes how the structure of the heart and the circulatory system is related to its function. The PowerPoint lesson and accompanying resources have been designed to cover the detail of point 8.8 of the Edexcel GCSE Biology and Combined Science specifications and includes descriptions of the role of the major blood vessels, the heart valves, and the relative thickness of the chamber walls. The lesson starts with an extract from Friends and challenges the students to recognise that full sized aortic pumps is a thesaurus version of big hearts. This reiterates the basic function of the heart that was met at KS2 and KS3 and moving forwards, the students will learn that it is the contraction of the cardiac muscle in the walls of the four heart chambers that allows this to happen. Students are provided with a diagram throughout the lesson which will be annotated as new structures are encountered and they begin by labelling the two atria and ventricles. The focus of the lesson is the relationship between structure and function so time is taken to consider the different roles of the atria and ventricles, as well as the right ventricle versus the left ventricle. Students will be able to observe from their diagram that the left ventricle has the thickest wall and they will be challenged to explain why later in the lesson once more detailed knowledge has been added. The next part of the lesson introduces the pulmonary artery and vein and a task challenges the students to consider the relationship between the heart and the lungs, and their prior knowledge of the adaptations of the alveoli is also tested. The remainder of the lesson discusses the double circulatory system and the heart valves. Understanding checks are found throughout the lesson and mark schemes are embedded into the PowerPoint to allow the students to assess their progress.
Transcription (Edexcel GCSE Biology)
GJHeducationGJHeducation

Transcription (Edexcel GCSE Biology)

(0)
This lesson describes the key steps involved in transcription, the 1st stage of protein synthesis. The PowerPoint and accompanying resource are part of the first lesson in a series of 2 lessons which have been designed to cover the content of point 3.8 of the Edexcel GCSE Biology specification. According to the specification, the students are expected to know this process in considerable detail, and the lesson has been planned to reflect this. In a previous lesson in topic 3, the students were introduced to the definition of a gene as a section of a DNA molecule that codes for the sequence of amino acids in a protein. They will learn that this represents coding DNA, so time is then taken to explain that not all DNA codes for proteins and that there are sections of non-coding DNA located in front and behind each gene. This is vital information as it leads into the start of the process, where the binding of RNA polymerase to a section of non-coding DNA located in front of the gene is the trigger for the start of transcription of that particular gene. Moving forwards, a step by step guide describes the key steps which include the lining up of the RNA nucleotides against the exposed bases and the formation of mRNA through the reactions catalysed by RNA polymerase. Students are given key details of RNA nucleotides, specifically the inclusion of uracil bases, and an understanding check challenges them to determine the sequence of RNA bases that will line up against a template strand. These current understanding checks along with prior knowledge checks are found throughout the lesson to allow the students to assess their progress and to challenge them to make links to previous lessons.