Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1216k+Views

2023k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
OCR Gateway A GCSE Physics Topic 8 REVISION (Global challenges)
GJHeducationGJHeducation

OCR Gateway A GCSE Physics Topic 8 REVISION (Global challenges)

(0)
This is a detailed REVISION lesson that contains an engaging powerpoint (99 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic 8 (Global challenges) of the OCR GCSE Physics A specification. The following specification points are covered in this lesson: Explain the factors which affect the distance required for road transport vehicles to come to rest in emergencies and the implications for safety Estimate how the distances required for road vehicles to stop in an emergency, varies over a range of typical speeds Estimate the forces involved in typical situations on a public road Describe the main energy sources available for use on Earth, compare the ways in which they are used and distinguish between renewable and non-renewable sources Explain patterns and trends in the use of energy resources Recall that step-up and step-down transformers are used to change the potential difference as power is transferred from power stations Link the potential differences and numbers of turns of a transformer to the power transfer involved; relate this to the advantages of power transmission at high voltages Recall that the domestic supply in the UK is a.c. at 50Hz and about 230 volts Recall the differences in function between the live, neutral and earth mains wires, and the potential differences between these wires Explain the red-shift of light as seen from galaxies which are receding (qualitative only). The change with distance of each galaxy’s speed is evidence of an expanding universe Explain how red shift and other evidence can be linked to the Big-Bang model Recall that our Sun was formed from dust and gas drawn together by gravity and explain how this caused fusion reactions, leading to equilibrium between gravitational collapse and expansion due to the energy released during fusion Recall the main features of our solar system, including the similarities and distinctions between the planets and their moons Due to the size of this revision lesson, it is likely to be used over the course of a number of lessons and can also be used throughout the duration of the GCSE course, as an end of topic revision lesson or as lessons in the lead up to mocks or the actual GCSE exams
AQA GCSE Physics Topic 8 REVISION (Space Physics)
GJHeducationGJHeducation

AQA GCSE Physics Topic 8 REVISION (Space Physics)

(0)
This is a concise REVISION lesson that contains an engaging powerpoint (43 slides) and associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P8 (Space Physics) of the AQA 9-1 GCSE Physics specification. The following sub-topics in the specification are covered in this lesson: Our Solar System The life cycle of a star Natural satellites Red-shift This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
OCR GCSE Physics REVISION LESSONS
GJHeducationGJHeducation

OCR GCSE Physics REVISION LESSONS

7 Resources
This bundle of 7 fully-resourced REVISION lessons have been designed to engage students whilst they assess their knowledge of the following topics that are covered in the OCR Gateway A GCSE Physics specification: Topic 1: Matter Topic 2: Forces Topic 3: Electricity Topic 4: Magnetism and magnetic fields Topic 5: Waves in matter Topic 6: Radioactivity Topic 8: Global challenges Each of the lessons have been written to include a range of activities which include differentiated tasks, exam questions (with clearly explained answers) and quiz competitions. Teachers can use these lessons with their students when they reach the end of a topic, in the lead up to the mocks or in the lead up to the actual GCSE exams.
AQA GCSE Combined Science Topic P7 REVISION (Magnetism and Electromagnetism)
GJHeducationGJHeducation

AQA GCSE Combined Science Topic P7 REVISION (Magnetism and Electromagnetism)

(0)
This is a concise REVISION lesson that contains an engaging powerpoint (34 slides) and associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P7 (Magnetism and electromagnetism) of the AQA Trilogy 9-1 GCSE Combined Science specification. Generally, this is a topic which isn’t particularly well understood by students but is regularly assessed through questions in the GCSE exams and so time has been taken to design the lesson so that the key points are covered and common misconceptions addressed. The following sub-topics in the specification are covered in this lesson: Poles of a magnet Magnetic fields Electromagnetism Fleming’s left hand rule Electric motors This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
OCR GCSE Physics A Topic 2 REVISION (Forces)
GJHeducationGJHeducation

OCR GCSE Physics A Topic 2 REVISION (Forces)

(0)
This is an engaging REVISION lesson which is fully-resourced and uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 2 (Forces) of the OCR GCSE Physics A 9-1 specification. The specification points that are covered in this revision lesson include: Recall and apply: distance travelled (m) = speed (m/s) x time (s) Recall and apply: acceleration (m/s2) = change in velocity (m/s) / time (s) Apply: (final velocity (m/s))2 - (initial velocity (m/s))2 = 2 x acceleration (m/s2) x distance (m) Recall and apply: kinetic energy (J) = 0.5 x mass (kg) x (speed (m/s))2 Describe how to measure distance and time and use these to calculate speed Explain the vector–scalar distinction as it applies to displacement and distance, velocity and speed Recall and apply: force (N) = mass (kg) x acceleration (m/s2) Recall and apply: momentum (kgm/s) = mass (kg) x velocity (m/s) Recall and apply: work done (J) = force (N) x distance (m) (along the line of action of the force) Recall and apply: power (W) = work done (J) / time (s) Represent such forces as vectors Define momentum and describe examples of momentum in collision Recall and apply Newton’s third law Recall and apply: force exerted by a spring (N) = extension (m) x spring constant (N/m) Recall and apply: gravity force (N) = mass (kg) x gravitational field strength, g (N/kg Recall and apply: (in a gravity field) potential energy (J) = mass (kg) x height (m) x gravitational field strength, g (N/kg) Recall and apply: pressure (Pa) = force normal to a surface (N) / area of that surface (m2) Recall and apply: moment of a force (Nm) = force (N) x distance (m) (normal to direction of the force Calculate a spring constant in linear case Describe that all matter has a gravitational field that causes attraction, and the field strength is much greater for massive objects Define weight, describe how it is measured and describe the relationship between the weight of an object and the gravitational field strength (g Define and calculate the moment of the force in such examples Use the relationship between the force, the pressure and the area in contact There is clearly a huge emphasis on the mathematical aspect of the subject in this topic and the various skills needed for success in the calculations are tested throughout this lesson. Students will enjoy the range of activities which includes quiz competitions such as “FILL THE VOID” where students compete to be the 1st to complete one of the 12 recall equations in this topic. This lesson is suitable to be used as a revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
OCR GCSE Physics A Topic 3 REVISION (Electricity)
GJHeducationGJHeducation

OCR GCSE Physics A Topic 3 REVISION (Electricity)

(3)
This is a fully-resourced REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 3 (Electricity) of the OCR GCSE Physics A 9-1 specification. The specification points that are covered in this revision lesson include: Describe the production of static electricity, and sparking, by rubbing surfaces, and evidence that charged objects exert forces of attraction or repulsion on one another when not in contact Explain how transfer of electrons between objects can explain the phenomena of static electricity Recall that current has the same value at any point in a single closed loop Recall and apply: potential difference (V) = current (A) x resistance (Ω) Recall and apply: power (W) = potential difference (V) x current (A) = (current (A))2 x resistance (Ω) Describe the differences between series and parallel circuits Represent d.c. circuits with the conventions of positive and negative terminals, and the symbols that represent common circuit elements Recall that current (I) depends on both resistance ® and potential difference (V) and the units in which these are measured Recall and apply the relationship between I, R and V, and that for some resistors the value of R remains constant but that in others it can change as the current changes Explain that for some resistors the value of R remains constant but that in others it can change as the current changes Use graphs and relate the curves produced to the function and properties of circuit elements Calculate the currents, potential differences and resistances in d.c. series and parallel circuits Apply the equations relating potential difference, current, quantity of charge, resistance, power, energy, and time, and solve problems for circuits which include resistors in series, using the concept of equivalent resistance Students will be thoroughly engaged throughout the lesson due to the range of activities which include quiz competitions such as “GRAFT over these GRAPHS” where they compete to be the 1st to recognise a particular component from its resistance graph. The main two question tasks are differentiated so that students who need extra assistance can still access the work and challenge their knowledge. This lesson is suitable to be used as a revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
OCR GCSE Physics A Topic 4 REVISION (Magnetism and magnetic fields)
GJHeducationGJHeducation

OCR GCSE Physics A Topic 4 REVISION (Magnetism and magnetic fields)

(0)
This is a fully-resourced REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 4 (Magnetism and magnetic fields) of the OCR GCSE Physics A 9-1 specification. The specification points that are covered in this revision lesson include: Describe the attraction and repulsion between unlike and like poles for permanent magnets Describe the difference between permanent and induced magnets Explain how the behaviour of a magnetic (dipping) compass is related to evidence that the core of the Earth must be magnetic Apply: force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density x current x length Apply: potential difference across primary coil (V)/potential difference across secondary coil (V) = number of turns in primary coil / number of turns in secondary coil Describe how a magnet and a current-carrying conductor exert a force on one another Show that Fleming’s left-hand rule represents the relative orientations of the force, the current and the magnetic field Explain how the force exerted from a magnet and a current-carrying conductor is used to cause rotation in electric motors Explain the action of a loudspeaker and headphones Of all of the Physics topics, this one tends to be one of the least well understood. Therefore, time has been taken to not only make this an engaging revision lesson but to go into detail on some of the topics which are commonly assessed in the exams. LInks have also been made to topic 3 (electricity) as these can often be combined in questions on Paper 1. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
AQA GCSE Physics Topic 7 REVISION (Magnetism and electromagnetism)
GJHeducationGJHeducation

AQA GCSE Physics Topic 7 REVISION (Magnetism and electromagnetism)

(0)
This is a fully-resourced REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Magnetism and electromagnetism) of the AQA GCSE Physics (8463) specification. The specification points that are covered in this revision lesson include: Poles of a magnet Electromagnetism Fleming’s left hand rule Electric motors Loudspeakers Transformers Of all of the Physics topics, this one tends to be one of the least well understood. Therefore, time has been taken to not only make this an engaging revision lesson but to go into detail on some of the topics which are commonly assessed in the exams. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
AQA GCSE Physics REVISION LESSONS
GJHeducationGJHeducation

AQA GCSE Physics REVISION LESSONS

8 Resources
This bundle of 8 revision lessons uses a range of activities that include exam questions (with clearly explained answers), differentiated tasks and quiz competitions to engage students whilst they are revising the following topics that are found on the AQA GCSE Physics specification: Topic 1: Energy Topic 2: Electricity Topic 3: Particle model of matter Topic 4: Atomic structure Topic 5: Forces Topic 6: Waves Topic 7: Magnetism and electromagnetism Topic 8: Space Physics These lessons can be used for revision at the end of the topic or in the lead up to the mocks or actual GCSE exams so that students can assess the areas of the specification which need their further attention If you want to see the quality of the lessons, download the topic 1 and 5 lessons as these are free
AQA GCSE Physics Topic 2 REVISION (Electricity)
GJHeducationGJHeducation

AQA GCSE Physics Topic 2 REVISION (Electricity)

(0)
This is an engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 2 (Electricity) of the AQA GCSE Physics (8463) specification. The specification points that are covered in this revision lesson include: Standard circuit diagram symbols Current, resistance and potential difference Resistors Series and parallel circuits Direct and alternating potential difference Mains electricity Power Static charge The students will thoroughly enjoy the range of activities, which include quiz competitions such as “GRAFT over these GRAPHS” where they have to compete to be the 1st to recognise one of the graphs associated with the resistors whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
Pearson Edexcel IGCSE Physics REVISION LESSONS
GJHeducationGJHeducation

Pearson Edexcel IGCSE Physics REVISION LESSONS

9 Resources
This bundle of 9 revision lessons uses a range of exam questions (with explained answers), differentiated tasks and quiz competitions to engage the students whilst challenging their knowledge of the content in the Pearson Edexcel IGCSE Physics specification: All 8 topics are covered by the lessons in this bundle: Topic 1: Forces and motion Topic 2: Electricity Topic 3: Waves Topic 4: Energy resources and energy transfers Topic 5: Solids, liquids and gases Topic 6: Magnetism and electromagnetism Topic 7: Radioactivity and particles Topic 8: Astrophysics There is also an additional lesson which challenges the students on their knowledge of the 21 Physics equations If you want to see the quality of the lessons, download the topic 1 and 7 and equations revision lessons as these are free
Pearson Edexcel IGCSE Physics Electricity REVISION (Topic 2)
GJHeducationGJHeducation

Pearson Edexcel IGCSE Physics Electricity REVISION (Topic 2)

(1)
This is an engaging REVISION lesson which is fully-resourced and uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 2 (Electricity) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first teaching in 2017 and first assessment in June 2019. The specification points that are covered and challenged in this revision lesson include: Use the following units: ampere (A), coulomb ©, joule (J), ohm (Ω), second (s), volt (V) and watt (W) understand how the use of fuses protects the device or user in a range of domestic appliances Know and use the relationship between power, current and voltage Know the difference between mains electricity being alternating current (a.c.) and direct current (d.c.) being supplied by a cell or battery Understand how the current in a series circuit depends on the applied voltage and the number and nature of other components Know and use the relationship between voltage, current and resistance Know that current is the rate of flow of charge Know that electric current in solid metallic conductors is a flow of negatively charged electrons Know that the voltage across two components connected in parallel is the same Calculate the currents, voltages and resistances of two resistive components connected in a series circuit Explain how positive and negative electrostatic charges are produced on materials by the loss and gain of electrons Know that there are forces of attraction between unlike charges and forces of repulsion between like charges The students will thoroughly enjoy the range of activities, which include quiz competitions such as “COMPLETE ME” where they have to compete to be the 1st to recognise an electrical key term to complete a passage whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
Energy resources and energy transfers REVISION (Edexcel IGCSE Physics Topic 4)
GJHeducationGJHeducation

Energy resources and energy transfers REVISION (Edexcel IGCSE Physics Topic 4)

(0)
This fully-resourced REVISION lesson is detailed and engaging and uses a range of exam questions, understanding checks, quick tasks and quiz competitions to allow students to assess their understanding of the content within topic 7 (Radioactivity and particles) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Describe energy transfers involving energy stores Use the principle of conservation of energy Know and use the relationship between efficiency, useful energy output and total energy output Describe how thermal energy transfer may take place by conduction, convection and radiation Explain ways of reducing unwanted energy transfer, such as insulation Know and use the relationship between work done, force and distance moved in the direction of the force Know and use the relationship between gravitational potential energy, mass, gravitational field strength and height Know and use the relationship between kinetic energy, mass and speed Understand how conservation of energy produces a link between gravitational potential energy, kinetic energy and work Use the relationship between power, work done (energy transferred) and time taken Describe the energy transfers involved in generating electricity using water, wind, geothermal resources, solar, fossil fuels and nuclear power The students will thoroughly enjoy the range of activities, which include quiz competitions such as “The TRANSFER MARKET” where they have to compete to be the 1st to identify the type of energy transfer shown whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
Radioactivity and particles REVISION (Edexcel IGCSE Physics Topic 7)
GJHeducationGJHeducation

Radioactivity and particles REVISION (Edexcel IGCSE Physics Topic 7)

(3)
This is a detailed and engaging REVISION lesson which is fully-resourced and uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Radioactivity and particles) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Use the following units: becquerel (Bq), centimetre (cm), hour (h), minute (min) and second (s) Describe the structure of an atom in terms of protons, neutrons and electrons and use symbols to represent isotopes Know the terms atomic (proton) number, mass (nucleon) number and isotope Know that alpha (α) particles, beta (β−) particles, and gamma (γ) rays are ionising radiations emitted from unstable nuclei in a random process Describe the nature of alpha (α) particles, beta (β−) particles, and gamma (γ) rays, and recall that they may be distinguished in terms of penetrating power and ability to ionise Describe the effects on the atomic and mass numbers of a nucleus of the emission of each types of radiation Understand how to balance nuclear equations in terms of mass and charge Know that the activity of a radioactive source decreases over a period of time and is measured in becquerels Know the definition of the term half-life and understand that it is different for different radioactive isotopes Use the concept of the half-life to carry out simple calculations on activity Know that nuclear reactions, including fission, fusion and radioactive decay, can be a source of energy Understand how a nucleus of U-235 can be split (the process of fission) by collision with a neutron, and that this process releases energy as kinetic energy of the fission products Know that the fission of U-235 produces two radioactive daughter nuclei and a small number of neutrons Describe how a chain reaction can be set up if the neutrons produced by one fission strike other U-235 nuclei Explain the difference between nuclear fusion and nuclear fission Describe nuclear fusion as the creation of larger nuclei resulting in a loss of mass from smaller nuclei, accompanied by a release of energy Know that fusion is the energy source for stars The students will thoroughly enjoy the range of activities, which include quiz competitions such as “It’s as easy as ABG” where they have to compete to be the 1st to form a word by using clues about the different types of radiation whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
Pearson Edexcel IGCSE Physics WAVES REVISION (Topic 3)
GJHeducationGJHeducation

Pearson Edexcel IGCSE Physics WAVES REVISION (Topic 3)

(0)
This is a detailed and engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 3 (Waves) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Use the following units: degree (°), hertz (Hz), metre (m), metre/second (m/s) and second (s) Explain the difference between longitudinal and transverse waves Know the definitions of amplitude, frequency, wavelength and period of a wave Know and use the relationship between the speed, frequency and wavelength of a wave Use the relationship between frequency and time period Explain that all waves can be reflected and refracted Know that light is part of a continuous electromagnetic spectrum that includes radio, microwave, infrared, visible, ultraviolet, x-ray and gamma ray radiations and that all these waves travel at the same speed in free space Know the order of the electromagnetic spectrum in terms of decreasing wavelength and increasing frequency, including the colours of the visible spectrum Explain some of the uses of electromagnetic radiations Draw ray diagrams to illustrate refraction Know and use the relationship between refractive index, angle of incidence and angle of refraction Describe the role of total internal reflection in transmitting information along optical fibres and in prisms Explain the meaning of critical angle c Know and use the relationship between critical angle and refractive index Know that sound waves are longitudinal waves which can be reflected and refracted Know that the frequency range for human hearing is 20–20 000 Hz Understand how the loudness of a sound relates to the amplitude of vibration of the source The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Should you WAVE goodbye” where they have to decide whether a passage about a sub-topic of waves is completely correct whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
Pearson Edexcel IGCSE Physics Topic 1 REVISION (Forces and motion)
GJHeducationGJHeducation

Pearson Edexcel IGCSE Physics Topic 1 REVISION (Forces and motion)

(2)
This is a detailed and engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Forces and motion) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Know and use the relationship between average speed, distance moved and time taken Know and use the relationship between acceleration, change in velocity and time taken Plot and explain velocity-time graphs Determine the distance travelled from the area between a velocity−time graph and the time axis Use the relationship between final speed, initial speed, acceleration and distance moved Understand how vector quantities differ from scalar quantities Understand that force is a vector quantity Know that friction is a force that opposes motion Know and use the relationship between unbalanced force, mass and acceleration Know and use the relationship between weight, mass and gravitational field strength Know that the stopping distance of a vehicle is made up of the sum of the thinking distance and the braking distance Describe the factors affecting vehicle stopping distance, including speed, mass, road condition and reaction time Know and use the relationship between momentum, mass and velocity Use the idea of momentum to explain safety features Use the conservation of momentum to calculate the mass, velocity or momentum of objects Use the relationship between force, change in momentum and time taken Demonstrate an understanding of Newton’s third law Know and use the relationship between the moment of a force and its perpendicular distance from the pivot The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Fill the VOID” where they have to compete to be the 1st to complete one of the know and use equations whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
CIE IGCSE Physics Topic 1 REVISION (General Physics)
GJHeducationGJHeducation

CIE IGCSE Physics Topic 1 REVISION (General Physics)

(0)
This is an engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (General Physics) of the CIE IGCSE Physics (0625) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: CORE Define speed and calculate average speed from total distance divided by total time Plot and interpret a speed-time graph or a distance-time graph Recognise from the shape of a speed-time graph when a body is at rest, moving at a constant speed or changing speed Calculate the area under a speed-time graph to work out the distance travelled for motion with constant acceleration Show familiarity with the idea of the mass of a body State that weight is a gravitational force Distinguish between mass and weight Recall and use the equation W = mg Recall and use the equation density = mass divided by volume Understand friction as the force between two surfaces which impedes motion and results in heating Calculate moment using the product force × perpendicular distance from the pivot Identify changes in kinetic, gravitational potential, chemical, elastic (strain), nuclear and internal energy that have occurred as a result of an event or process Recognise that energy is transferred during events and processes, including examples of transfer by forces (mechanical working), by electrical currents (electrical working), by heating and by waves Apply the principle of conservation of energy to simple examples Describe how electricity or other useful forms of energy may be obtained from a range of sources Show a qualitative understanding of efficiency Demonstrate understanding that work done = energy transferred Relate (without calculation) power to work done and time taken, using appropriate examples SUPPLEMENT Distinguish between speed and velocity Define and calculate acceleration Understand deceleration as a negative acceleration Describe, and use the concept of, weight as the effect of a gravitational field on a mass State Hooke’s Law and recall and use the expression F = k x, where k is the spring constant Apply the principle of moments to different situations Understand that vectors have a magnitude and direction The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Are you the KING of the KINGDOMS” where they have to name the kingdoms involved based on a feature whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual IGCSE exam
AQA GCSE Physics Topic 5 REVISION (Forces)
GJHeducationGJHeducation

AQA GCSE Physics Topic 5 REVISION (Forces)

(3)
This is an engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 5 (Forces) of the AQA GCSE Physics (8463) specification. The specification points that are covered in this revision lesson include: Scalar and vector quantities Contact and non-contact forces Gravity Work done and energy transfer Forces and elasticity Moments Speed Velocity Acceleration Newton’s laws Stopping distance Momentum Conservation of momentum Changes in momentum The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Fill the VOID” where they have to compete to be the 1st to complete one of the recall equations whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
Condensation polymers
GJHeducationGJHeducation

Condensation polymers

(0)
This is an engaging lesson that looks at a range of condensation polymers that are formed by condensation reactions. The lesson includes a detailed lesson presentation (51 slides) and accompanying worksheets which contain a differentiated task. The lesson begins by providing the students with a definition of a condensation reaction and challenging them to predict the identity of the smaller molecule. Moving forwards, students will learn that as well as water being a product, the larger molecule is known as a condensation polymer. Time is taken to look at a range of condensation polymers throughout the course of the lesson, and this includes both natural and artificial examples. Students are shown how to draw block diagrams to visualise how the functional groups react and then once water is removed, they are able to see the group that remains and joins the parts together. Students are shown how to name the ester formed according to the carboxylic acid and alcohol involved. The final part of the lesson involves a summary quiz called “It’s time to take the POLYGRAPH” where they have to read a number of passages about condensation polymers and decide which ones are telling lies and which are the truth. This lesson has been written for GCSE students
AQA GCSE Physics Topic 6 REVISION (Waves)
GJHeducationGJHeducation

AQA GCSE Physics Topic 6 REVISION (Waves)

(0)
This is an engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 6 (Waves) of the AQA GCSE Physics (8463) specification. The specification points that are covered in this revision lesson include: Transverse and longitudinal waves Properties of waves Reflection of waves Sound waves Waves for detection and exploration Types of electromagnetic waves Properties of electromagnetic waves Visible light The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Should you WAVE goodbye” where they have to determine whether a passage about waves is 100% correct or not whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams