A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
An engaging and detailed lesson presentation (53 slides) and associated worksheets that looks at the properties and functions of enzymes and explores how the rate of enzyme-controlled reactions changes with changes in conditions. The lesson begins by using a quick quiz competition to introduce the key terms of active site and substrate. Diagrams accompany the important descriptions so that students can visualise how enzymes are specific to a single substrate and will form enzyme-substrate complexes with only them. Emil Fischer’s lock and key hypothesis is briefly discussed so that the correlation between the hypothesis and key terms can be made. Students are shown how most enzymes or groups of enzymes can be named by remembering two rules and they will be tested on this through a second competition. At this point, a progress check is used to allow the students to assess their understanding and ability to bring the information together for enzyme function.
The rest of the lesson looks at how changing the temperature and pH will affect the rate of an enzyme controlled reaction. Students will meet the graph shapes that accompany both of these factors and then are helped with the explanation of the trend which is normally poorly done in exam questions.
This lesson has been designed for GCSE students.
A detailed lesson presentation and associated question worksheet which uses a step by step guide and numerous worked examples to show students how to draw genetic crosses to calculate offspring percentages. Before students are able to draw genetic diagrams, they need to understand and be able to use genetic terminology so this is the focus for the start of the lesson. Time is taken to go over the meaning of dominant and recessive alleles, genotypes and phenotypes. Moving forwards, students will be challenged to link genotypes to phenotypes for both dominant and recessive disorders and common misconceptions such as carriers in recessive disorders are explained. Finally, a 5 step guide is used to walk students through drawing genetic diagrams. Students are then given a chance to apply their new-found knowledge to questions about the inheritance of cystic fibrosis and polydactyly. Progress checks have been written into the lesson at regular intervals so that students can assess their understanding.
This lesson has been designed for GCSE students but is perfectly suitable for A-level students who are studying the topic of monogenic inheritance
An engaging and detailed lesson presentation (31 slides) that looks at how nitrogen is cycled and focuses on the different bacteria who play key roles in this cycle. The lesson begins by exploring why nitrogen is so critical for living organisms for the synthesis of DNA and proteins. Students are introduced to nitrogen-fixing bacteria to start and challenged to use their knowledge of interdependence to state the type of ecological relationship that is formed between them and the leguminous plant that they live on. Each stage of the cycle is complimented by a diagram highlighting that part so students are able to visualise how the cycle comes together. Time is taken to ensure that students recognise that any non-leguminous plants can only absorb nitrogen when it is nitrates form from the soil. Moving forwards, students will meet decomposers and nitrifying bacteria and again be shown where their function fits into the cycle. As the final part of the learning, students are challenged to consider what else is needed in order for this to be a cycle and will meet the denitrifying bacteria as a result. Progress checks, in a range of forms, have been written into this lesson at regular intervals so that students can assess their understanding and any misconceptions can be immediately addressed.
This lesson has been written for GCSE students, but could be used with A-level students who want to have a recap before extending their knowledge further.
An informative lesson presentation (20 slides) and associated worksheet that looks at how negative feedback loops act as a final control in homeostatic mechanisms. This is a topic which is poorly understood by students at both GCSE and even A-level, so whilst designing this lesson, the focus was on a few key points and applying it to a range of actual examples. Students will see how a negative feedback loop is used in the control of adrenaline release and temperature regulation and they will also be shown what would happen if this loop didn’t exist. Students are then challenged to apply their knowledge by putting the order of the regulation of metabolic rate into the correct order. The final part of the lesson briefly looks at how positive feedback loops also exist by using the example of the release of oxytocin during birth.
This lesson has primarily been designed for GCSE students but is suitable for A-level Biology students too.
An engaging lesson presentation (31 slides) and associated worksheet that looks at animal and plant cells as eukaryotic cells. The lesson focuses on the organelles which are found inside these two cells and ensures that students understand the difference between the cells as well as briefly looking at the difference to prokaryotic cells at the end of the lesson. There is a lot of key terminology involved in this topic, so a range of tasks including fun quiz competitions are used to introduce these terms in an engaging manner. The lesson is student based, with the emphasis on them to identify the functions of the different organelles as well as recognising which ones are found in both cells or just plant cells. Discussions are encouraged during the lesson with leading questions, such as questioning whether a red blood cell isn’t actually an eukaryotic cell because of the lack of nucleus. Progress checks have been written into the lesson at regular intervals during the lesson so that students can assess their understanding.
This lesson has been written for GCSE students but could be used with KS3 students who are looking to extend their knowledge beyond the basics that they will be taught at this level.
A fully-resourced lesson that looks at the reaction of an acid with a metal or a metal carbonate and guides students through writing word and symbol equations to represent these reactions. This lesson includes a lesson presentation (39 slides) and differentiated worksheets.
The lesson begins by challenging the students to spot a pattern when naming the salts that are produced from these reactions. Students are shown how the second word of the salt’s name depends upon the particular acid involved in the reaction and are given opportunities to watch this in worked examples before applying their knowledge to a question. Students will also meet the general formula for the reaction of an acid with a metal carbonate. Moving forwards, a step by step guide is used to show the students how to write fully balanced symbol equations. Time is taken to specifically show them how to write accurate chemical formulae, including those which involve a bracket as is common in this topic. The final task challenges the students to bring all of this information together to write word and symbol equations for three reactions. This worksheet is differentiated two ways so students who require some assistance can still access the work.
This lesson has been written for GCSE students (14 - 16 year olds in the UK)
A quick and fun lesson which goes through the accurate addition of state symbols to balanced symbol equations. The aim of this lesson is to give students quick and easy ways to recognise the state of matter of a reactant or product whilst being engaged trough the format of the lesson.
A number of quick quiz competitions are used in the lesson, either to introduce a new term of to act as a fun understanding check. First of all, students will use their Chemistry knowledge to come up with the fourth symbol, aq, which is commonly forgotten. Moving forwards, a worked example is used to guide the students through adding the state symbols. A visual of the experiment is shown in a video but could be done as a demonstration to help the students further. Finally, the students are challenged to apply their new-found knowledge and write a fully balanced symbol equation with state symbols. An assistance sheet is available for those who need a little push.
This lesson has been designed for GCSE students
An engaging lesson presentation (39 slides) with associated differentiated worksheets that looks at they key differences between pure and impure substances and briefly explores how a mixture like an alloy can still be very useful.
The lesson begins by challenging the students to recognise 4 diagrams of pure substances from a selection of 5. This will lead students to the definition of pure (in Science) which is likely to be different to what they have encountered in everyday language. The next task gets the students to draw a graph showing the melting and boiling points of pure water. This will enable them to compare the melting point against that of an impure substance and therefore recognise that this difference can be used as point to decide on purity. An example of gritting is used to explain how this change in melting point can be utilised and then the students are challenged to apply this new-found knowledge to the situation of adding salt to boiling water when making pasta. The remainder of the lesson focuses on some famous mixtures. Beginning with air, students will be able to visualise how this mixture is made of a number of gases, each with different boiling points which allows them to be separated by fractional distillation. Alloys are briefly explored so that students know why these mixtures are used for certain functions over pure metals and the summary passage for this task has been differentiated two ways so that all can access the work. Progress checks have been written into the lesson at regular intervals so that students can check their understanding and a range of quick quiz competitions are used to maintain engagement whilst introducing new terms in a fun manner.
If you want to look into alloys in greater detail, then this lesson could be combined with the one named “alloys” which is also uploaded.
A fully-resourced lesson which explores how the composition of different alloys is related to their properties and their uses. The lesson includes an engaging and informative lesson presentation (38 slides) and an associated differentiated worksheet.
The lesson begins by challenging the students to use their Chemistry knowledge of numbers to come up with the letters of the word alloy. Students are introduced to the definition of this key term and then use a wordsearch to find both the names of the alloys but also the metals that are found in these mixtures. The main aim of this lesson is to get students to understand why alloys are chosen for jobs rather than pure metals and there is a focus on atoms and their arrangement. Students are challenged to use the example of copper and brass to complete a summary passage which is differentiated so that those who need more assistance are still able to access the work. The remainder of the lesson focuses on steel and solder, again exploring how their different features are related to how they are used in modern day life. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and a range of quick quiz competitions will aid engagement.
This lesson has been designed for GCSE students but could be used with KS3 students who are looking at mixtures within the atoms and elements topic.
A fully-resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes a practical-based lesson presentation (19 slides) and associated worksheets containing differentiated questions.
The aim of the beginning of the lesson involves getting students to understand the term, concentration, so that they are able to use it accurately in their descriptions. This is a term which is commonly wrongly used by students. Moving forwards, students will carry out a practical to collect valid results so that they can apply their knowledge of concentration to explain a trend. Certain practical skills are challenged during the lesson such as the drawing of a results table to display the results. A worksheet containing questions on the practical is differentiated so that students who need assistance are still able to access the learning.
This lesson has been designed for GCSE students but can be used with KS3 students who are learning about chemical reactions.
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson.
This lesson has been designed for GCSE students.
A fully-resourced lesson which looks at the meaning of the rate of reaction and guides students through calculating both the mean and instantaneous rate of reaction. The lesson includes a concise lesson presentation (19 slides) and a question worksheet which is differentiated two ways.
The lesson begins by challenging the students to suggest the missing factor in the rate of reaction equation so they can learn that either the mass of a reactant or a mass of a product could be used. Links are made to practical skills as students will understand that if a product is in the gaseous form, the volume produced within a set time will enable the rate to be calculated. Worked examples are used to show the students how to calculate the mean rate of reaction and then the instantaneous using a tangent. The rest of the lesson involves collecting data from an experiment to calculate the rate of reaction. The questions associated with the practical have been differentiated so students who need assistance can still access the learning.
This lesson has been written for GCSE students
An engaging lesson presentation (33 slides) which walks students through the main steps in the extraction of iron from its ore. The lesson begins by challenging the students to recall the reactivity series of metals and specifically the position of iron in relation to carbon so they recognise that it can be extracted by reduction with carbon. Key skills from other Chemistry topics are tested during the lesson such as writing chemical formulae and redox reactions. The rest of the lesson involves a step-by-step guide where students are given a passage and a symbol equation with something missing which they have to complete. This task ensures that students recognise the products, formulae and state symbols at each stage. A number of quiz competitions are used during the lesson to maintain engagement and progress checks have been written into the lesson at regular intervals so that students can assess their understanding.
This lesson has been written for GCSE students and fits in nicely with other resources that are uploaded (extracting metals and extracting aluminium).
An engaging and practical based lesson presentation (24 slides) which challenges the students to carry out a range of practical tasks to learn the identification tests and positive results for the anions.
The lesson begins by challenging the students to use their prior knowledge of chemical formulae to name two sets of ions. Students will be reminded of the definition of a cation so they can use this to write an accurate one for the anions. The rest of the lesson looks at the different tests and time is taken to explain the details behind each of them. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding. A set homework has also been included.
This lesson has been written for GCSE students.
A resourced lesson which looks at a number of examples of biological polymers. The lesson includes an engaging lesson presentation (40 slides) and a couple of worksheets to be used in the understanding check task.
The starter activity challenges the students to use their Chemistry knowledge to come up with the abbreviation DNA. They will learn the key details of this polynucleotide and then time and focus is given to the nitrogenous bases and how they bond between the two strands. Moving forwards, students will be shown the next biological polymer that is a polypeptide. They are briefly shown how to draw a block diagram to represent the chain of amino acids. The final polymer are carbohydrates and students will learn how glycogen, starch and cellulose are formed from glucose monomers. Regular progress checks are written into the lesson at regular intervals to allow the students to check their understanding and ask questions.
This lesson has been written for GCSE students
An informative lesson presentation (44 slides) that looks at the work of the key Scientists involved in the development of the atomic model. Dalton, Thomson, Rutherford and Bohr were four men whose work has led to the changes in the atomic model over the years and this lesson looks at parts of each of their work. There is a focus on Rutherford’s work with the alpha particles and students are challenged to draw conclusions based on the deflections they are shown. There is lots of time written into the lesson for consolidation and regular progress checks ensure that students have the opportunity to assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who perhaps are carrying out a project on the atom and want to add detail to their work
A fully-resourced lesson which looks at speed and velocity as scalar and vector quantities and then guides students through a range of questions which challenge them to calculate both of these forms of motion. The lesson includes an engaging lesson presentation (44 slides) and differentiated worksheets containing questions.
The lesson begins by introducing the terms magnitude and direction so that students can learn how scalar and vector quantities differ. Students will learn that speed is a scalar quantity and velocity is a vector quantity and then be questioned through a crossroads scenario to understand how speed can stay the same but as soon as an object changes direction, the velocity changes. Moving forwards, the students are given the equation to calculate speed and a few simple questions are worked through before they have to do a series of their own questions to find the average speeds for walking, running and cycling. A pair of more difficult speed questions are then attempted which challenge the students to convert from metres per seconds to miles per hour and to calculate the speed of a bicycle by calculating the distance travelled by the sensor on the wheel. This task is differentiated so that students who need some assistance will still be able to access the work. A quiz competition is then used to introduce students to the range of equations which contain velocity and then having been given them, they have to rearrange the formula to make velocity the subject and apply to some further questions. The final task of the lesson brings all the work together in one final competition where students have to use their new-found knowledge of speed and velocity to get TEAM POINTS. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and any misconceptions to be addressed immediately.
This lesson has been written for GCSE students and links between the other topics on the curriculum but could be used with KS3 students who are finding the topic of speed too simple and are needing a challenge
A fully-resourced lesson which looks at the chemical reaction of cracking and the conditions that are needed for this reaction on both an industrial scale and in a laboratory. The lesson includes an engaging lesson presentation (33 slides) and an associated worksheet containing questions for a progress check.
The lesson begins by challenging the students to use their knowledge of alkanes and a given example to work out the name of a 6, 7 and 8 carbon alkane. Students need to be able to name the alkanes and alkenes in order to understand the products of a cracking reaction. A number of quiz competitions are used to introduce both the name of the reaction but also the temperature that is needed when it is carried out on an industrial scale. Students will then be shown a diagram of a cracking experiment in a laboratory so they can discover that a catalyst is also needed. Students will learn, either through carrying out the experiment or through the informative slide, that the product of a cracking reaction is a smaller alkane molecule and a smaller alkene molecule. Time is taken to go back over the meaning of saturated and unsaturated and once the students have been introduced to bromine water, they are challenged to work out what the respective reactions will be when it is added to an alkane and an alkene. The remainder of the lesson focuses on writing word and chemical symbol equations for a cracking reaction. Students will be shown how the second product of a reaction can be worked out when the reactant and first product are provided and then they challenge themselves by trying to write three equations. Understanding checks are written into the lesson at regular places to allow the students to check on their understanding.
This lesson has been designed for GCSE students.
A resourced lesson which looks at the key details of a titration to enable students to generate results which could be used in a titration calculation. The lesson includes an engaging lesson presentation (29 slides) and an associated worksheet.
The lesson begins with a spot of fun as students are challenged to read the script of a scene from Friends to identify a neutralisation reaction. Students will learn that a method called a titration can use the results of an acid-base neutralisation to work out the concentration of an unknown. Students will learn the names of the equipment involved through a quiz competition and will then be shown how to set up a table to collect the results. Key terms such as titre, rough and end-point are explained. The lesson finishes with one further round of the competition called “Take the HOTSEAT” so that the knowledge of the key terminology from today’s lesson can be checked. The lesson has been designed with regular progress checks throughout so that students can check their understanding.
This lesson has been designed for GCSE students.
A concise lesson presentation (21 slides) which uses a range of methods to allow students to discover how to draw dot and cross diagrams for covalent structures. The lesson begins by challenging the students to recall their knowledge of electronic structure to show the outer shell of two specified atoms. They will then see how it is possible for both of these atoms to get full outer shells by sharing as happens in this type of bonding. A few more examples are used to consolidate this understanding before quick competition is used to check the understanding so far. Moving forwards, a step by step guide shows students how to draw dot and cross diagrams using the same techniques as was utilised with the hulas.
This lesson has been written for GCSE students but could be used with higher ability KS3 students.