This was designed for my Year 11 Foundation class. It is a second lesson after students have already had an introduction to solving quadratic equations by factorising, All quadratics in this lesson can be solved by factorising - they just must be re-arranged to give a quadratic equal to 0.
There are 3 examples to go through - one which is a recap of previous work, and 2 quadratics that need to be re-arranged.
There are 20 fluency questions for students to work through. The bronze questions at the top only have positive terms in the quadratic, while the gold questions underneath introduce some negatives.
There are 2 problem solving questions at the end as an extension, or to finish off the lesson. These are both based on past exam questions.
Designed for Higher GCSE Students to review their knowledge of equations of straight lines, in particular finding the equation:
Between 2 points
When given the gradient and a point
When given a parallel line and a point
Also requires an understanding of the relationship between the gradients of two lines that are perpendicular.
In each line of the table, students are given some of the information about a straight line - and have to fill in the missing information!
8 Time Series graphs and questions to accompany them. As well as questions on basic graph reading skills, I’ve also included questions that test other skills, for example averages, percentage increase, and writing one amount as a fraction of another. Solutions to all questions are provided.
It’s possible to get all questions on one doubled-sided piece of A4 if you print 2 pages per sheet.
Apart from the football-related graphs, all data is completely fictional!
I’ve also uploaded the word documents so you can make any changes, if desired.
A Tarsia activity to help students become familiar with function notation f(x), by substituting values into functions, composite functions, and inverse functions. There are 16 pieces to the puzzle - students substitute values into functions and match that piece up to its answer on another card. When completed, the 16 pieces form a square.
To make things a bit more challenging, some functions do not have an answer to match with - these will go around the outside of the completed square.
The 3 functions f(x), g(x) and h(x) that students need to complete the puzzle are in the PNG file - these can be projected onto the whiteboard while students work. Note that I haven’t provided students with the Inverse Functions - students must derive them on their own.
Sadly, I was not able to upload the Tarsia file itself, just a pdf version, so you cannot make any edits yourself.
A task designed to make simplifying algebraic fractions a little more interesting.
Students are given 24 expressions and must use them to create 12 algebraic fractions (no repeats). The aim is to create 12 algebraic fractions that can all be simplified. I’ve provided a solution to show it is possible, but there may be more than one solution!
I’ve used this with a Year 12 class but it could also be suitable for able KS4.
I wanted a resource where students had to factorise monic quadratics that only had positive terms, so I created this task.
Students factorise each of the given quadratics into double brackets. They cross off each bracket in the grid at the bottom of the page - each bracket appears multiple times, but it doesn’t matter which one they cross off. Once students have factorised every quadratic, their grids will probably all look different, but they will all have 8 letters left that weren’t crossed off that can be re-arranged to spell BUDAPEST.
I like to use the grid method for expanding double brackets, and then I use the grid method “in reverse” to factorise non-monic quadratics.
To introduce this idea of working “in reverse”, I created these 2 worksheets. Students are already given the four terms inside the grid, and they have to determine what the brackets around the outside must be.
A simple worksheet on Multiplying Mixed Numbers - nothing fancy.
12 questions for students to complete.
Once students have completed a question, they cross off the answer at the bottom of the page - if they can’t find their answer, they’ve made a mistake somewhere.
There are 15 answers, so 3 won’t be used.
A simple worksheet on Dividing Mixed Numbers - nothing fancy.
12 questions for students to complete.
Once students have completed a question, they cross off the answer at the bottom of the page - if they can’t find their answer, they’ve made a mistake somewhere.
There are 15 answers, so 3 won’t be used.
A task I designed to challenge some high-ability students.
There are 9 questions on Multiplying Mixed Numbers, each one missing a digit. Students have to work out the missing digit in each calculation. Each of the numbers 1 - 9 will be used exactly once.
Answers are provided.
This was inspired by a task from Don Steward: https://donsteward.blogspot.com/2014/12/algebraic-product-puzzles.html
I wanted some similar puzzles on Quadratics that were more accessible to weaker students, without any negative terms, so that’s what I created!
Students have to fill in each blank cell with a bracket so that every row and column multiplies to make the quadratic expression at the end. Of course this could be done by random trial and error, but it makes much more sense to factorise the Quadratics!
An example is given on the sheet to help students understand how the puzzles work.
Answers are provided.
A Treasure Hunt on converting fractions to decimals and vice versa.
Print off the questions and place them around the classroom. Students pick a starting point, answer the question and look for their answer at the top of a different card - this tells them which question to answer next. If they’re correct, they should end up back at their starting point after completing 20 questions. The number in the top right of each card is the question number.
The solution is provided.
2 worksheets on the topic of Iteration, with answers provided. Each worksheet is available as a pdf and a Word document, in case you want to make any changes.
In worksheet #1, all the answers are integers. I find this helps students understand the idea of a recursive formula, as they can perform all the calculations in their head.
Students are given a recursive formula and the value of x1, and must calculate the values of x2, x3 and x4. They then cross off their answers in the grid at the top of the page. Once they’ve finished the entire worksheet, there will be 6 numbers in the grid they haven’t crossed off. These 6 numbers add up to 100. This is a nice, quick way for you to check that your students have completed the task correctly!
The content on worksheet #2 is more challenging as students will need to know how to use the ANS button on their calculators in a recursive formula. This is just a simple practice worksheet - students write down the values of x2, x3, and x4 in the spaces and then move on to the next question.
A couple of activities on Frequency Trees (aimed at KS3). The worksheets are provided in pdf and Word, in case you want to make any edits. Solutions are provided.
In “complete using the clues”, students are given 3 blank frequency trees, and 4 clues to go with each. They must use the clues to fill in each frequency tree. This requires some basic knowledge of fractions of amounts and ratio.
In “true or false”, students are given a partially completed frequency tree and must fill in the remainder - this requires some basic number facts. Using their completed frequency tree, they must then decide which of the 13 statements at the bottom of the page are true. This will require some knowledge of fractions of amounts, percentages of amounts, and ratio.
A simple game to give students some practice of algebraic substitution. Due to the competitive element and using dice, I find that students quite enjoy it!
Students roll a die - the number rolled is their x value.
They substitute their x value into one of the expressions on the grid - the answer is the number of points they score this round.
Play then passes to the next student who repeats the process (although they can’t pick any algebraic expressions that have already been chosen).
A treasure hunt based on ratio questions like: Hugh and Kristian share some money in the ratio 9:7. Hugh gets £10 more than Kristian. How much does each person get?
Students pick their own starting point, answer the question, and look for their answer at the top of another card. This tells them which question to answer next, and then they repeat the process. They should end up back at their starting point if they get all 20 questions correct. Solution provided.
An activity that gets pupils to practise division problems where the answer is a decimal, a skill which is motivated by a need to find approximations to the irrational number pi. There are 3 different levels of questions for pupils to attempt. Some of the questions really are quite challenging!
Inspired by “The Simple Life” - a task from Colin Foster: https://nrich.maths.org/13207
I wanted a simpler version to suit my weaker group.
Students are given a variety of algebraic expressions in the form a(bx + c) and must pick 2 to add up. They are given 8 answers to aim for. Possible solutions are provided - there may be other solutions, I’m not really sure!
An activity that gets students to practise finding fractions of amounts, which also introduces an element of problem solving.
Students create their own questions. They pick a numerator, pick a denominator, and work out that fraction of the large number at the top of the screen. They’re aiming to create calculations with the given answers on the screen. Some students might pick their fractions completely at random, whereas others may approach things a bit more logically…
There are 6 different activities, with varying degrees of difficulty. Some answers can be made via more than one calculation, but I’ve made a suggestion on how to complete each problem.
This is very similar to the excellent activity from danielabbott89 - https://www.tes.com/teaching-resource/mean-from-a-frequency-table-amazon-reviews-6323431
However, the products in that resource are now a bit out of date, so I wanted to make a resource that would have a bit more longevity. Students have to work out the average (mean) rating given by Amazon users to various products - the data is real! The data is presented as a frequency table. Solutions are provided (to 2 decimal places).
A good resource to use in a poster-making lesson!