A Bronze, Silver, Gold differentiated resource. Students are given a variety of fractions, decimals and percentages which they must place into a square grid, ensuring that every row and column is in ascending order. This hopefully makes quite a dull topic a little more interesting!
There are multiple solutions to the puzzles, but I have provided one possible answer to each puzzle. However, to make the puzzles work, the smallest value must go in the top left box, and the largest value must go in the bottom right box.
Designed to go with Chapter 5 of the Echo Express 1 book. Students have to look for vocabulary based on objects you’d find in your room in the Boggle-like grid (the words they’re looking for are provided). Unlike a normal wordsearch, you can go diagonally, sideways, backwards etc. to find the next letter in the word. An example of how to find the word “Erdkunde” (from a different Boggle resource I’ve made) is provided.
Designed to go with Chapter 2 of the Echo Express 1 book. Students have to look for school subjects vocabulary in the Boggle-like grid (the words they’re looking for are provided). Unlike a normal wordsearch, you can go diagonally, sideways, backwards etc. to find the next letter in the word. An example of how to find the word “Erdkunde” is provided.
Designed to go with Chapter 2 of the Echo Express 1 book. Students have to look for opinions vocabulary in the Boggle-like grid (the words they’re looking for are provided). Unlike a normal wordsearch, you can go diagonally, sideways, backwards etc. to find the next letter in the word. An example of how to find the word “Erdkunde” (from a different Boggle I’ve made) is provided.
A task designed to make simplifying algebraic fractions a little more interesting.
Students are given 24 expressions and must use them to create 12 algebraic fractions (no repeats). The aim is to create 12 algebraic fractions that can all be simplified. I’ve provided a solution to show it is possible, but there may be more than one solution!
I’ve used this with a Year 12 class but it could also be suitable for able KS4.
A Treasure Hunt based on finding the input value in a function machine when given the output.
Print out the cards and stick them around the classroom. Students pick their own starting point, answer the question, and look for their answer at the top of a different card. This tells them which question to do next, and then they repeat the process. They should end up back at their starting point if they get all the questions correct. Solution provided.
Students have to find a path crossing left to right through the maze that only goes through correct answers. Diagonal moves are not allowed.
Types of errors included:
Forgetting to multiply the second term
+/- mixed up
x multiplied by x is 2x
Variable changes
Solution provided.
A Treasure Hunt on ratio questions of the form: Hugh and Kristian share some money in the ratio 3:4. Hugh gets £18. How much does Kristian get?
Stick the questions up on the wall around the room. Students pick their own starting point, answer the question, and look for their answer on the top of a different card. This tells them which question to answer next. They end up back at the starting point if they complete all 20 questions correctly.
Solution provided.
A treasure hunt based on ratio questions like: Hugh and Kristian share some money in the ratio 9:7. Hugh gets £10 more than Kristian. How much does each person get?
Students pick their own starting point, answer the question, and look for their answer at the top of another card. This tells them which question to answer next, and then they repeat the process. They should end up back at their starting point if they get all 20 questions correct. Solution provided.
Having seen exam questions in the new GCSE that combine angles and algebra, I designed the following worksheet to challenge my top set Year 10 group. Students have to determine the value of x in each question. Later questions go beyond what I think we’re likely to see at GCSE. Answers are provided.
Inspired by “The Simple Life” - a task from Colin Foster: https://nrich.maths.org/13207
I wanted a simpler version to suit my weaker group.
Students are given a variety of algebraic expressions in the form a(bx + c) and must pick 2 to add up. They are given 8 answers to aim for. Possible solutions are provided - there may be other solutions, I’m not really sure!
The same idea as these excellent Don Steward tasks (https://donsteward.blogspot.com/2014/12/algebraic-product-puzzles.html) but extended to include factorising expressions where the common factor includes a variable.
Students insert algebraic expressions into the grid so that each column and row multiplies to give the expression at the end - an example is given on the sheet to hopefully make this clearer. This is a problem solving task involving factorising!
I’ve included a Powerpoint in case you want to make any changes to the task. Answers are provided on the Powerpoint.
Used with an able Year 10 group as a way to revise factorising into single brackets. Students are given a partially completed multiplication grid with algebra, and must deduce what expressions go in the remaining boxes. As a starting point, look at the 3rd column: by factorising 6x + 8 and 15x + 20, we deduce that (3x + 4) must go at the top of this column. Solutions are provided.
An activity that gets students to practise finding fractions of amounts, which also introduces an element of problem solving.
Students create their own questions. They pick a numerator, pick a denominator, and work out that fraction of the large number at the top of the screen. They’re aiming to create calculations with the given answers on the screen. Some students might pick their fractions completely at random, whereas others may approach things a bit more logically…
There are 6 different activities, with varying degrees of difficulty. Some answers can be made via more than one calculation, but I’ve made a suggestion on how to complete each problem.
8 Time Series graphs and questions to accompany them. As well as questions on basic graph reading skills, I’ve also included questions that test other skills, for example averages, percentage increase, and writing one amount as a fraction of another. Solutions to all questions are provided.
It’s possible to get all questions on one doubled-sided piece of A4 if you print 2 pages per sheet.
Apart from the football-related graphs, all data is completely fictional!
I’ve also uploaded the word documents so you can make any changes, if desired.
This was inspired by an excellent resource on TES by MrMawson (https://www.tes.com/teaching-resource/prime-factor-decomposition-logical-puzzle-11367345). I’ve used it with higher-attaining students, but wanted to adapt it to make it a bit more accessible to lower-attaining students.
In each question, students are given 2 numbers. They should draw prime factor trees for each number and look for common prime factors. The common prime factors go in the middle boxes, and the remaining prime factors go in the boxes around the outside. Solutions are provided.
A task I used with more able Year 8 students. Students are given decreasing arithmetic sequences - but most of the terms are missing. They must first determine the missing terms, and then work out the nth term.
Solutions are provided.
Students are given the beginning of a sequence and must determine the next 3 terms. They also need to classify the sequence as arithmetic, geometric or quadratic. Solutions are provided.
This is similar to a resource already on TES that I really like (https://www.tes.com/teaching-resource/gcse-maths-sequences-search-worksheet-6158880) but I wanted an activity that required more substitution into nth terms rather than pattern-spotting, so this is what I came up with.
Students have to find the 1st, 2nd, 5th, 10th, 50th and 100th terms of sequences using the given nth terms. They cross off all of their answers in the grid above. For ease of marking, there will be 10 numbers left over in the grid after the activity is completed. Students should add these together, and if they’ve made no mistakes, they’ll get a total of 1000. Full solutions are still provided however!
A basic fluency worksheet that makes the topic of adding fractions a bit more challenging. Rather than adding 2 given fractions, students have to determine what the missing numerator should be to give the calculation a certain answer.
Solutions are provided.