Hero image

524Uploads

214k+Views

114k+Downloads

Design a personal heart monitoring system
IETEducationIETEducation

Design a personal heart monitoring system

(0)
Programme the system using the accelerometer and LED display This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. There are many reasons to monitor heart rate. For example: There are 2.7 million people in the UK currently suffering from heart problems. The quicker these problems can be found and treated the better the chance of a full recovery. Athletes measure their heart rate during training to ensure that they are training in their optimum physical range. In this unit, learners will use the BBC micro:bit to develop a prototype for a personal heart monitoring system. Activity info, teachers’ notes and curriculum links In this activity, learners will develop their programmable system using the BBC micro:bit’s inbuilt accelerometer to detect motion created by the pumping of the heart. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Social effects of health management
IETEducationIETEducation

Social effects of health management

(0)
How could programmable systems be used to allow people to monitor their own health? This is one of a series of resources to support the use of the BBC micro:bit in design and technology lessons. There are many reasons to monitor heart rate. For example: There are 2.7 million people in the UK currently suffering from heart problems. The quicker these problems can be found and treated the better the chance of a full recovery. Athletes measure their heart rate during training to ensure that they are training in their optimum physical range. In this unit, learners will use the BBC micro:bit to develop a prototype for a personal heart monitoring system. Activity info, teachers’ notes and curriculum links In this activity, learners will discuss the social effects of good and bad personal health management and the potential benefits that programmable systems can bring to this. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Design the casing for a flood warning system
IETEducationIETEducation

Design the casing for a flood warning system

(0)
Draw and annotate casing that meets a design brief and design criteria This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Flooding is becoming increasingly common in parts of the United Kingdom and causes a lot of damage to peoples’ homes. The sooner a potential flood can be detected, the more time homeowners have to prepare and to save their property. In this unit of learning, learners will identify the design problems presented by flooding. They will then develop a working flood warning system using the BBC micro:bit. Activity info, teachers’ notes and curriculum links In this activity, learners will design a suitable casing for their BBC micro:bit flood warning system. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Create a flood warning system
IETEducationIETEducation

Create a flood warning system

(0)
Alert homeowners to the risk of flooding with your prototype In this free resource, learners will identify the design problems presented by flooding. They will then develop a working flood warning system using the BBC micro:bit. By engaging in this activity, students will gain valuable knowledge about computing and design principles while having fun at the same time. This could be used as a main lesson activity. It is an ideal exercise for learners to improve their understanding of basic electronics, develop programming skills, make use of programmable components, and embed intelligence into a product design. **Tools/resources required ** Projector/Whiteboard BBC micro:bit system and online programming software Internet (to access programming software) PCB development software Moisture sensors and LEDs Crocodile clips or other wiring options (to attach input and output devices) PCB or strip board to create homemade moisture sensors and/or potential divider circuits PCB production facilities (etch tank or CAM router) What is the BBC micro:bit? The BBC micro:bit is a great way to get kids interested in computing. It is a small, programmable computer that can be used to create a wide variety of activities and projects. It is a powerful teaching and learning tool that helps learners develop their own systems and learn the basics of coding. It is an ideal tool for introducing children to programming concepts in a fun and engaging way. The engineering context This is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at KS3. It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners. Suggested Learning Outcomes By the end of this activity students will understand a block systems diagram of the flood warning system and they will understand the use of a moisture sensor as an input sensor. They will also be able to design a moisture sensor and/or potential divider circuit. Lastly, they will be able to successfully program the BBC micro:bit so that the system meets the design criteria. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Flood prevention strategies
IETEducationIETEducation

Flood prevention strategies

(0)
Program a prototype system to alert homeowners flooding risks The flood prevention strategies activity tasks participants to program a prototype system to alert homeowners flooding risks. Flooding is becoming increasingly common in parts of the United Kingdom and causes a lot of damage to peoples’ homes. The sooner a potential flood can be detected, the more time homeowners have to prepare and to save their property. This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Damage caused by flooding can have widespread effects on people’s lives, homes, businesses, and agriculture. Authorities aim to provide adequate warnings when the risk of flooding is likely, however this can be challenging. Activity info, teachers’ notes and curriculum links In this activity, learners will debate the social impact of flooding and how design and technology could provide solutions to this. They should think about how programmable systems could be used to help homeowners and the authorities respond better and provide earlier and more effective warnings that flooding is likely to occur. They will then develop a working flood warning system using the BBC micro:bit. Please do share your classroom learning highlights with us @IETeducation Tools/resources required Projector/Whiteboard To watch videos the ‘flood warning system’ and ‘flood engineers’ videos, please visit the IET Education website.
Integrating the bag alarm system
IETEducationIETEducation

Integrating the bag alarm system

(0)
Investigate and apply methods to attach the bag alarm device to a piece of clothing This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day. In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit. Activity info, teachers’ notes and curriculum links In this activity, learners will design a fully integrated product. They will investigate and apply methods to attach their device to a piece of clothing. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Design an alarm for your schoolbag
IETEducationIETEducation

Design an alarm for your schoolbag

(0)
**Use the BBC micro:bit programmable system to create a working prototype of a motion detector alarm. ** This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day. In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit. Activity info, teachers’ notes and curriculum links In this activity, learners will develop their programmable system using the BBC micro:bit and the device’s inbuilt accelerometer to detect movement. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Product analysis with the BBC Microbit
IETEducationIETEducation

Product analysis with the BBC Microbit

(0)
Analyse an existing personal alarm system This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day. In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit. Activity info, teachers’ notes and curriculum links In this activity, learners will carry out an analysis of an existing, commercially available personal alarm system. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Ohm's law resistor calculation with the BBC micro:bit
IETEducationIETEducation

Ohm's law resistor calculation with the BBC micro:bit

(0)
In this activity students will learn about importance of and use Ohm’s law to calculate the value of a protective resistor for an LED. Using a BBC micro:bit, they will develop a prototype for an LED based automatic home lighting system, designed to save energy. This prototype aims to promote energy efficiency, a concern that resonates with our daily life as it’s estimated that the average UK homeowner could save up to £240 a year alone on the cost of lighting their home. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. This is part of our series of resources designed to support the use of the BBC micro:bit in secondary school design & technology (DT), computing and engineering lessons. It can also be used to support physics sciences lessons. Activity: Developing a prototype for an LED based automatic home lighting system In this sustainable lighting activity, students will be tasked with creating a smart lighting system that adjusts based on environmental conditions. The engineering context Engineers are often required to program devices to perform specific tasks, optimise system performance, or even create entirely new technologies. This involves understanding how to embed intelligence into products, which can range from simple household items like automatic lighting systems to more complex systems like autonomous vehicles or smart city infrastructure. By learning programming skills and understanding how to integrate them into engineering projects, students will gain an insight into how different components can work together in a system. Furthermore, resistors are essential components in electronic circuits, controlling the flow of electricity and protecting components from damage by limiting the current. Understanding Ohm’s law and resistor calculation will lay the groundwork for many aspects of electronics and electrical engineering. Suggested learning outcomes By the end of this activity, students should be able to understand and apply Ohm’s Law, particularly in calculating the value of a protective resistor for an LED. The skills they acquire will extend beyond the classroom, equipping them with practical knowledge that can be applied in real-world situations. This activity will also set a solid foundation for more complex electronic theory lessons or when delving deeper into the relationship between voltage, current, and resistance. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Design an automatic lighting system
IETEducationIETEducation

Design an automatic lighting system

(0)
Use the BBC micro:bit programmable system to create a working prototype of a automatic lighting system This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. People are always looking for ways to save energy. It is estimated that the average UK homeowner could save up to £240 a year alone on the cost of lighting their home. In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an LED based automatic home lighting system, designed to save energy. Activity info, teachers’ notes and curriculum links In this activity, learners will develop their programmable lighting system using the BBC micro:bit. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
What am I? Inputs and outputs
IETEducationIETEducation

What am I? Inputs and outputs

(0)
Guess the device from a series of clues This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. People are always looking for ways to save energy. It is estimated that the average UK homeowner could save up to £240 a year alone on the cost of lighting their home. In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an LED based automatic home lighting system, designed to save energy. Activity info, teachers’ notes and curriculum links This is an engaging starter activity where learners will extend their understanding of input and output devices used in the system and consolidate their learning. They will be able to develop their knowledge of components and both test themselves and their peers. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Flood Defence Challenge
IETEducationIETEducation

Flood Defence Challenge

(0)
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® Challenge Day. The challenge Students work in teams to design and make a prototype of a simple device, that will allow homeowners to remove water from their homes, during periods of flooding. About IET Faraday® Challenge Days IET Faraday® Challenge Days are designed for six teams of six students (36 students in total) aged 12-13 years (year 8, and equivalent) and is carried out over one school day. A cross-curricular Science, Design and Technology, Engineering and Mathematics (STEM) activity day that encourages the development of students’ problem solving, team working and communication skills. Students achieve a better understanding of what engineering is and the science, maths and technology elements within engineering, leading to increased engagement in science or technology lessons afterwards. The challenge has been specifically designed to give students the opportunity to be creative in their solutions and to succeed, independent of their level of ability. This activity is therefore suitable for a range of different ability levels. All online resources are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. You can stream and download the related films for free by clicking on the link in the related resources section. Please share your classroom learning highlights with us @IETeducation To view the additional supporting videos, please visit the IET Education website.
Table Tennis Server Challenge
IETEducationIETEducation

Table Tennis Server Challenge

(0)
IET Faraday® DIY Challenge Day This engineering challenge for kids aims to create a device that consistently serves table tennis balls to a player so that they can practice their skills at the table tennis table. By creating this brilliant machine, a player can practice table tennis on their own while the machine serves back to them. Activity introduction The Faraday Challenge ‘Table Tennis Server’ has been designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent). Each team will be asked to assign: a team leader; an accountant; an assessment coordinator; two scientists; two mathematicians; two design and technologists; manufacturers and designers. Each team member will need to be assigned more than one role and feed into different aspects of the day. You can adapt this set of resources for larger numbers of students if, for example, you wish to run the event for the whole year group. If this is the case, you will need to increase the number of team booklets and practical resources appropriately. We have provided a set of printable resources and guidelines notes giving teachers and technicians the basic ingredients to run their very own Faraday Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way. The set of downloadable materials includes: Teachers pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates. Student booklet Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. Introductory PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips. The engineering context Table tennis is a growing sport in the UK. Practice, as with most things, is the key to improving at the sport. The only problem is that it is hard to practice on your own. Being able to return service is often what provides the edge in terms of winning and losing. Within this challenge, students will work in teams to design and make a prototype device that will serve tennis balls consistently across a table tennis table. The server must fit securely on the edge of the table and serve at least four balls accurately and precisely in the same position, and allow the ball to be returned. Download the activity sheets for free! All online resources (including film clips!) are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. For additional related videos, please visit the IET Education website.
Emergency Communications Challenge
IETEducationIETEducation

Emergency Communications Challenge

(0)
IET Faraday® DIY Challenge Day A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® DIY Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way. The context of the challenge Ease of communication is part of our life, we pick up the phone, turn on the radio, TV or internet to get news and information. Wifi networks work by radio signals. Your phone, TV and radio signals are transmitted by masts we hardly notice. But when all of these are knocked out by natural events how do we communicate? Students are the engineer rescue team based in the town of Alpha which has been relatively unaffected by the extreme weather. As the engineer rescue team in town Alpha, students will design and build a prototype device that will need to send coded messages to town Beta, and create a code to send a message from Alpha across the mountains for decoding in Beta. There is little time to lose, with a (simulated) helicopter arriving in a matter of hours to transport half of the rescue team to town Beta to set up the system for testing. Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. What’s included? The complete set of downloadable materials includes: Teachers pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day… plus printable Faradays currency and student certificates. Student booklet Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. Introductory PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips. **Remember, it’s all free! ** All online resources (including film clips!) are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. If you are running one of our IET Faraday® DIY Challenge Day please do share your experience with us via our feedback form and case study template here. If you are unfamiliar with how to run a IET Faraday® DIY Challenge Day have a look at our 6 start-up videos here where we take you through the days, how they should run and what they entail. And please do share your classroom learning highlights with us @IETeducation
Remote Operations Challenge
IETEducationIETEducation

Remote Operations Challenge

(0)
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® DIY Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way. The context of the challenge Engineering has always been of great importance to the health industry. Machines, equipment, techniques and procedures are developing at a great pace and rely on engineering research and development. The field of bioengineering – the application of engineering principles to address challenges in the fields of biology and medicine, is advancing rapidly. As medical knowledge, techniques and expertise get more sophisticated, the needs to perform remote operations, to levels of minute accuracy, are becoming more and more necessary and common. The Remote Operations challenge is based on the IET Faraday® Challenge Day of the same name from our 2010/11 IET Faraday® Challenge Day season. Students work in teams to design and make a prototype device that can simulate a heart and kidney transplant, but must be operated remotely. Objects representing the human heart (tennis ball) and a kidney (ping-pong ball) must be picked up and accurately placed in their appropriate holes in an MDF/cardboard cutout of a human torso. Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. **What’s included? ** The complete set of downloadable materials includes: Teachers pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day … plus printable Faradays currency and student certificates. Student booklet Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. Introductory PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips. Film clips Informative clips about remote medicine and robotic surgery, plus examples of possible solutions to the challenge. To view the additional related videos, please visit the IET Education website.
Mission to Mars - DIY challenge day
IETEducationIETEducation

Mission to Mars - DIY challenge day

(0)
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® DIY Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way. The context of the challenge Humans have been exploring the Earth for many years, travelling abroad for holidays, organising explorations to the top of mountains, to the poles of the Earth and to the bottom of oceans. What happens when this spirit of expedition is turned to the skies? Activity info and teachers’ notes The Mission to Mars challenge is based on the IET Faraday® Challenge Day of the same name from our 2013/14 IET Faraday® Challenge Day season. Students are the engineer specialists recruited by ‘Make it 2 Mars’ to establish a human settlement on the planet Mars by 2023. Students will design and construct a rocket which will transport supplies via Earth orbit to the astronauts on Mars, as well as building a system to transport their rocket to the launch site for testing. Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. What’s included? The complete set of downloadable materials includes: Teachers pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates. Student booklet Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. Introductory PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips. Download the free activity sheet below! All online resources are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. If you are running one of our IET Faraday® DIY Challenge Day please do share your experience with us via our feedback form and case study template here. If you are unfamiliar with how to run a IET Faraday® DIY Challenge Day have a look at our 6 start-up videos here where we take you through the days, how they should run and what they entail. And please do share your classroom learning highlights with us @IETeducation
How to make flowcharts for programming
IETEducationIETEducation

How to make flowcharts for programming

(0)
Write a flowchart program to meet a given design brief Programming is an essential skill in the 21st century world. From mobile phones and tablet computers, to large ‘fly by wire’ passenger jet aircraft, our everyday lives are shaped by systems that have been programmed. These systems keep us safe, get us to work/school or allow us to communicate with our friends and family. The work of programmers is all around us. Almost all modern electronic systems and products have been programmed to perform different tasks. Learning how to program has therefore become an essential skill for both product and systems designers. Activity info, teachers’ notes and curriculum links An engaging activity which enables students to understand and be able to create flowcharts. This is one of the two main methods of programming (the other being raw code/programming language). The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can stream and download the related films by clicking on the appropriate link in the related resources section below. And please do share your classroom learning highlights with us @IETeducation
What is a program?
IETEducationIETEducation

What is a program?

(0)
Understand the importance of clear instructions when developing a program In this starter activity, students are introduced to what is meant by a program through our fun maze route activity. For the purposes of this activity a program is a set of step-by-step instructions that must be followed. Learners will therefore be asked to create a set of instructions that will solve a problem. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT). Activity: Understanding the importance of clear instructions when developing a program In this activity students will complete a practical activity that will help them to understand what programme is. Learners will get into pairs and, with one person having to navigate their (blindfolded) partner through a simple maze by giving them verbal instructions. After this activity, there will be a class discussion on the importance of clear and concise instructions. Students will then reflect on what a programmable system is (i.e., a set of instructions) and discuss how this links to the activity that they’ve just completed. Download our activity overview for an introductory lesson on programmes for free! The engineering context Programming is an essential skill in the 21st century world. From mobile phones and tablet computers to large passenger aircrafts, our everyday lives are shaped by systems that have been programmed. These systems keep us safe, get us to work/school or allow us to communicate with our friends and family. Suggested learning outcomes By the end of this lesson students will learn that a program is simply a set of step-by-step instructions. They will also understand the importance clear instructions when developing a program. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. You can download our classroom lesson plan for free! Please do share your highlights with us @IETeducation
Programming commands
IETEducationIETEducation

Programming commands

(0)
Learning to programme using BASIC language commands This activity is designed to build on understanding of programming commands and what they are used to do in a program. It requires students to show a detailed knowledge of each command and what it is used to do. It also requires them to apply programming commands in a real context. Students will engage with the BASIC language commands, understanding their purpose and how they function. They will write their own program to control an LED light, seeing first hand how their code translates into action. BASIC is a simple programming language that can be used to program electronic systems. It consists of a set of commands that can be used to perform particular functions. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within engineering and design and technology (DT). Activity: Learning to programme using BASIC language commands This activity involves understanding and applying BASIC programming commands. Starting with a discussion about the language and its common commands, students will then predict the functions of commands like ‘high’, ‘low’, ‘goto’, ‘wait’/‘pause’, ‘if’, ‘else’, and ‘stop’. They will put their understanding into practice by writing a program to control an LED light. Reflection on their experience and a question-answer session will round off the activity, consolidating their learning and addressing any queries. The engineering context Programming plays a crucial role in engineering, especially with the rise of programmable systems, such as smart devices and autonomous vehicles. By learning to program in BASIC and applying it in a real context, students get a sense of how engineers use programming to create solutions and control systems. Suggested learning outcomes Through this beginner activity, students will gain an understanding that programs can be written using programming code. They will learn the purpose and function of a range of BASIC programming commands, and they will also get a chance to write a program using these commands to meet a given design brief. The activity aims to provide students with a solid foundation in programming, equipping them with the skills and knowledge to further explore this vital field. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. Please do share your highlights with us @IETeducation.
Programmable systems of the future
IETEducationIETEducation

Programmable systems of the future

(0)
Design a future programmable system to meet user needs As technology progresses, programmable systems are being increasingly utilised at home and in industry. What will the programmable systems of the future be like and how will we use them? In this activity, students apply what they have learnt about the uses and designs of programmable systems to invent their own to meet a specific user need. Activity info, teachers’ notes and curriculum links An engaging activity in which students look to the future and consider what they have learnt so far about programmable systems to design their own that meets a user need. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation