Hero image

Science 4 Breakfast

Average Rating5.00
(based on 4 reviews)

Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.

172Uploads

16k+Views

2k+Downloads

Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
GCSE Chemistry Electrolysis of Molten Compounds Including Half-Equations: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Electrolysis of Molten Compounds Including Half-Equations: Complete Lesson

(1)
PowerPoint that covers the following learning objectives: Describe electrolysis in terms of movement of ions when an ionic compound is molten. Predict the products at each electrode for the electrolysis of a molten ionic compound. Explain whether the reactions at each electrode are oxidation or reduction. Write half equations for oxidation and reduction reactions. This includes diagrams, questions, answers and explanations. This is made for a GCSE chemistry class.
GCSE Chemistry Reactivity Series and Displacement Reactions: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Reactivity Series and Displacement Reactions: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Describe what the reactivity series is and the order of metals within it. Define what a displacement reaction is. Predict where displacement reactions occur. Write word equations to represent displacement reactions. Includes questions, answers, explanations and examples. This is made for a GCSE chemistry class.
GCSE Chemistry Ionic Equations for Metal and Acid Reactions Oxidation and Reduction: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Ionic Equations for Metal and Acid Reactions Oxidation and Reduction: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Describe the reaction between metal and acid using an ionic equation. Determine and explain which species is oxidised and which species (metal atom or ion) is reduced in a reaction in terms of electron transfer. Includes questions, answers, examples and explanations. This is made for a GCSE chemistry class. If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
GCSE Chemistry Reactions of Metals with Oxygen and Water: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Reactions of Metals with Oxygen and Water: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Describe the reaction between metals and oxygen and write the word and symbol equation for this. Describe the reaction between metals and water and write the word and symbol equation for this. Deduce the order of reactivity for metals reacting with oxygen and with water. Includes questions, answers, word equation practice and chemical symbol equation practice. This is made for a GCSE chemistry class.
GCSE Chemistry Fractional Distillation, Fractions and Uses of Fractions: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Fractional Distillation, Fractions and Uses of Fractions: Complete Lesson

(0)
PowerPoint made for a KS4 science class. Includes questions, answers, diagrams and a 6 mark exam question. The following learning objectives are covered: Describe what fractional distillation is and how it works. Name the different fractions from crude oil. State a use for each fraction from crude oil. To apply knowledge to exam questions on how fractional distillation is used to separate crude oil into fractions.
GCSE Chemistry Crude Oil, Hydrocarbons and Alkanes: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Crude Oil, Hydrocarbons and Alkanes: Complete Lesson

(0)
PowerPoint for a GCSE KS4 science class. Includes questions and answers. Covers the following learning objectives: Describe the composition of crude oil. Define what is meant by a hydrocarbon. Define what is meant by an alkane. State the names and describe the first four alkanes. Apply a general formula to generate a molecular formula and a displayed formula for a straight-chain alkane.
GCSE Chemistry Exothermic and Endothermic Reactions: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Exothermic and Endothermic Reactions: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Define exothermic and endothermic reaction and distinguish between exothermic and endothermic reactions on the basis of the temperature changes of the surroundings. Describe examples of exothermic and endothermic reactions. Includes questions, activities and answers. For a KS4 GCSE Science class.
GCSE Chemistry Introduction to Electrolysis: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Introduction to Electrolysis: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Define electrolysis. Describe electrolysis in terms of the movement of ions. Explain why electrolysis can only occur when an ionic compound is molten or in aqueous solution. This is made for a KS4 GCSE Chemistry class. Includes diagrams, a demonstration activity, questions and answers.
GCSE Chemistry Simple Covalent Molecules Structure and Properties: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Simple Covalent Molecules Structure and Properties: Complete Lesson

(0)
Structure and Properties of Simple Covalent Molecules is an engaging and detailed PowerPoint resource designed for GCSE-level chemistry students. This lesson explores the characteristics of simple covalent molecules, their bonding, and their physical properties, aligning with key curriculum standards. The lesson begins with a starter activity reviewing bonding types and drawing dot-and-cross diagrams for water and nitrogen, ensuring students are engaged and prepared for the topic. Learning objectives include: Describing the limitations of different molecular representations (dot-and-cross, ball-and-stick, and displayed formula diagrams). Defining intermolecular forces and their impact on molecular properties. Explaining why simple covalent molecules have low melting and boiling points and why they do not conduct electricity. Core content is enhanced with: Comparisons of molecular representations to highlight their advantages and disadvantages. An introduction to intermolecular forces as attractions between molecules, distinct from covalent, ionic, and metallic bonds. An explanation of how molecule size affects the strength of intermolecular forces and trends in melting and boiling points. Real-world connections, such as why pure water doesn’t conduct electricity but saltwater does. Interactive activities and review questions test students’ understanding of key ideas, including trends in molecular size, bonding properties, and conductivity. Students are challenged to apply concepts to examples like fluorine and bromine, fostering critical thinking. Formatted as a .pptx file, this resource is compatible with most devices and is perfect for classroom teaching or independent learning. It includes modern visuals and tasks to engage students effectively. Ideal for science educators, this resource provides a comprehensive introduction to the structure and properties of simple covalent molecules, building a strong foundation for further studies in chemistry.
GCSE Chemistry Covalent Bonding: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Covalent Bonding: Complete Lesson

(0)
This comprehensive PowerPoint resource on Covalent Bonding is designed to help students understand how non-metal atoms form bonds through the sharing of electrons. It provides a structured lesson plan that includes starter activities, clear explanations, and interactive learning objectives. Key topics covered include the definition of covalent bonding, how bonds form, and detailed instructions for drawing dot-and-cross diagrams of simple molecules such as H₂, F₂, O₂, CO₂, CH₄, NH₃, and H₂O. The presentation is ideal for secondary school science students and aligns with chemistry curricula focused on bonding and molecular structures. Starter activities engage students by reinforcing prior knowledge, such as properties of metals and metallic bonding, while guiding them to categorize compounds as ionic or covalent. The slides are rich with examples and include step-by-step modeling of covalent bonding, which aids visual learners in grasping the concept. Updated for clarity and usability, this PowerPoint includes review questions to consolidate learning and practice. It is a ready-to-use resource for teachers, complete with editable slides to tailor the content to specific classroom needs. The file format is .pptx, ensuring compatibility with most devices and software. Perfect for lessons, revision, or self-study, this resource makes understanding covalent bonding accessible and engaging for students.
GCSE Chemistry Metallic Bonding: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Metallic Bonding: Complete Lesson

(0)
This engaging PowerPoint presentation on Metallic Bonding provides an in-depth exploration of how metal atoms bond and the resulting properties of metals. It offers a complete lesson plan for secondary school students, including clear learning objectives, interactive starter activities, and comprehensive content explanations. Key topics include the definition of metallic bonding, the concept of delocalized electrons, the formation of giant lattices, and the physical properties of metals such as malleability, ductility, conductivity, and high melting/boiling points. Designed to align with chemistry curricula, the resource also introduces alloys, explaining their composition, properties, and the science behind their hardness compared to pure metals. Students are encouraged to apply their understanding through review questions, practical examples, and opportunities to draw diagrams. This resource demystifies concepts such as the sea of delocalized electrons and their role in the unique characteristics of metals. Perfect for teachers and students, this PowerPoint (.pptx file) is editable, making it easy to tailor to specific classroom needs. Updated recently to enhance usability and content accuracy, this resource is suitable for lessons, revision, or independent study. It is particularly useful for visual learners, with detailed diagrams and examples that bring the topic to life. Whether used for classroom instruction or exam preparation, this presentation provides a robust foundation in understanding metallic bonding and its applications.
GCSE Chemistry Chemical Formulae and Structure of Ionic Compounds: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Chemical Formulae and Structure of Ionic Compounds: Complete Lesson

(0)
This engaging PowerPoint lesson is designed to help students master the fundamental concepts of ionic compounds. Perfect for secondary school chemistry classes, it features clear explanations, practical examples, and interactive tasks that align with key curriculum standards. What’s Covered: Understanding Ionic Compounds: Explore the formation of ionic compounds and deduce their chemical formulae using examples like magnesium oxide and potassium chloride. Learn about polyatomic ions, including sulphate and nitrate. Ionic Bonding and Lattices: Examine the arrangement of ions in giant ionic lattices, focusing on sodium chloride’s 3D structure. Compare various models (2D, 3D, ball-and-stick, dot-and-cross), discussing their advantages and limitations. Learning Objectives: Deduce the formula of common ionic compounds. Represent ionic structures with models and diagrams. Understand the limitations of different representational methods. Interactive Activities: Starter questions and practice problems for deducing chemical formulae. Creative tasks like building ionic lattices with molymod kits. Exam-style questions to consolidate understanding. Why This Resource? Aligned with secondary school chemistry curricula, ensuring comprehensive coverage. Flexible usage: Ideal for guided lessons, homework, or revision. Promotes active learning through hands-on activities and real-world applications. File Type: PowerPoint (.pptx) Updated: December 2024 – Includes additional examples, enhanced visuals, and video integration for interactive learning. This resource is an excellent choice for teachers looking to make the topic of ionic compounds both accessible and engaging for their students!
GCSE Chemistry Ionic Bonding: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Ionic Bonding: Complete Lesson

(0)
This detailed PowerPoint presentation on Ionic Bonding is an ideal teaching resource for secondary school chemistry lessons. It provides a clear explanation of how ionic bonds form, alongside interactive and engaging activities to help students consolidate their understanding. The resource includes learning objectives, step-by-step examples, and practice exercises designed to develop students’ skills in drawing dot-and-cross diagrams for ionic compounds. Key topics covered include the definition of ionic bonding, the formation of positive and negative ions through electron transfer, and the role of electrostatic forces of attraction. The presentation explores common examples such as sodium chloride, magnesium oxide, and potassium oxide, and provides detailed instructions on working out ion charges for elements in Groups 1, 2, 6, and 7. Students are encouraged to practice constructing ionic bonding diagrams for compounds like lithium fluoride, calcium chloride, and sodium oxide, with extension tasks to deepen their understanding. This PowerPoint (.pptx file) is fully editable, making it easy for teachers to adapt the content to their specific curriculum requirements. Updated recently for improved clarity and functionality, the resource is suitable for classroom use, homework assignments, or independent study. Its structured approach and clear visuals make complex concepts accessible and engaging for learners. Whether you’re teaching bonding for the first time or revising for exams, this resource provides everything you need to support your students’ mastery of ionic bonding.