I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This is a homeschool pack designed for the KS3 Year 7 Science course, specifically the ‘B1.2 Structure and Function of Body Systems’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains six pages of information, to meet learning objectives within the Year 7 ‘Structure & Function of Body Systems’ unit of work. This is followed by three pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Levels of Organisation
Gas Exchange
Breathing
Skeleton
Movement: Joints
Movement: Muscles
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This is a homeschool pack designed for the KS3 Year 7 Science course, specifically the ‘B1.3 Reproduction’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains eight pages of information, to meet learning objectives within the Year 7 ‘Reproduction’ unit of work. This is followed by three pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Adolescence
Reproductive Systems
Fertilisation and Implantation
Development of a Fetus
The Menstrual Cycle
Flower & Pollination
Fertilisation & Germination
Seed Dispersal
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This is a homeschool pack designed for the GCSE Biology course, specifically the ‘B1.1 Cells’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains nine pages of information, to meet all learning objectives within the GCSE Biology ‘Cells’ unit of work. This is followed by five pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Animal & Plant Cells
Eukaryotic & Prokaryotic Cells
Specialised Cells
Chromosomes & Mitosis
Diffusion
Osmosis
Active Transport
Exchanging Materials
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This is a homeschool pack designed for the GCSE Biology course, specifically the ‘B1.2 Organisation’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains twelve pages of information, to meet all learning objectives within the GCSE Biology ‘Organisation’ unit of work. This is followed by seven pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Stem Cells
Tissues & organs
The human digestive system
Human digestive enzymes
The blood
Blood vessels
The heart
Helping the heart
Breathing & gas exchange
Plants tissues & organs
Transport in plants
Evaporation & transpiration
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This is a homeschool pack designed for the GCSE Biology course, specifically the ‘B1.4 Bioenergetics’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains nine pages of information, to meet all learning objectives within the GCSE Biology ‘Bioenergetics’ unit of work. This is followed by five pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Photosynthesis
Structure of plants - Adapated to photosynthesis
Rate of photosynthesis
Products of photosynthesis
Making the most of Photosynthesis
Aerobic respiration
Anaerobic respiration
Response to exercise
Metabolism & the liver
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This is a homeschool pack designed for the GCSE Biology course, specifically the ‘B1.3 Infection & Response’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains nine pages of information, to meet all learning objectives within the GCSE Biology ‘Infection & Response’ unit of work. This is followed by five pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Heath & Wellness
Pathogens & Disease
Preventing Infections
Defence Mechanisms
Antibiotics & Painkillers
Vaccination
Bacterial Diseases
Viral Disease
Fungal & Protist Diseases
Cancer
Antibiotic Resistance
Drug Trials
Smoking
Alcohol
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This is a homeschool pack designed for the GCSE Biology course, specifically the ‘B1.6 Inheritance, variation & evolution’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains nine pages of information, to meet all learning objectives within the GCSE Biology ‘Inheritance, variation & evolution’ unit of work. This is followed by five pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Types of Reproduction
Meiosis
Gene Expression & Inheritance
DNA Structure & Protein Synthesis
Inherited Disorders
Genetic Screening
Variation
Continuous & Discontinuous Variation
Selective Breeding
Genetic Engineering
Ethics of Gene Technologies
Evolution by Natural Selection
Evidence for Evolution: Fossils
Extinction
Evolution of Antibiotic Resistant Bacteria
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This resource contains 10 homework activities, and detailed mark schemes, which meet all learning outcomes within the Year 8 Biology, Chemistry and Physics Units:
Biology:
B2.1 Health & Lifestyle
B2.2 Ecosystem Processes
B2.3 Adaptation & Inheritance
Chemistry
C2.1 Metals & Acids
C2.2 Separation Techniques
C2.3 The Earth
C2.4 The Periodic Table
Physics
P2.1 Electricity & Magnetism
P2.2 Energy
P2.3 Motion & Pressure
The resources were designed with the Year 8 Activate course in mind, it contains up to 24 weeks worth of homework content!! You can find more lesson bundles aimed for the KS3 and KS4 science curriculum at: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a ‘Carbohydrates’ true or false activity, students can answer these questions on their mini whiteboards. This will give you an understanding of knowledge attained at GCSE level on this topic.
Students are then introduced to the differences between monosaccharides and discaccharides, and provided with examples of sugars in each of these categories. Students are also introduced to the differences between hydrolysis and condensation reactions, they can have a go at drawing examples of these reactions using the mini whiteboards. After this section of the lesson, students will sort statements into two columns - either describing a condensation or a hydrolysis reaction.
Students are also introduced to the three polysaccharides - starch, glycogen and cellulose - but we will cover these carbohydrates in more details in another lesson.
Students are shown the test for reducing and non-reducing sugars, they need to be able describe the steps involved with both these food tests, as well as state the positive result for each test.
The last part of the lesson focuses on assessment, students will firstly answer a set of questions about what they have learned this lesson. This task can then be self-assessed using the mark scheme provided. Lastly, students will complete an exam question on this topic, which they can then swap with their partner to peer-assess.
The plenary task requires students to summarise what they have learned in 3 facts, 3 key words and with 1 question posed to their peers.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a brief introduction to the three main polysaccharides that students need to know about at A-level Biology level - starch, glycogen and cellulose. Students will then complete a ‘Prior Knowledge’ quiz so you can gain an understanding of their depth of knowledge around this topic area, this task can be self-assessed using the mark scheme once complete. I would also probably collect in the quizzes, so I can ascertain the level different students are working at.
Students will now divide into 6 groups, each group will study either starch, glycogen or cellulose. Students will be given an information poster on either of these polysaccharides, and will need to answer a set of questions (provided on the PowerPoint slide). Once complete, students will then share their answers with a group which studied a different polysaccharide, and will need to complete a summary table to assess the similarities and differences between all three. This task can be self-assessed using the mark scheme provided.
Lastly, students will need to learn the test for starch - the steps as well as the colours shown for a negative/positive result. They can take notes on this test in their books.
The plenary task requires students to write a twitter message to demonstrate what they have learned today, including #keywords.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with an introduction to enzymes and a starter discussion to review the structure of amino acids and the quaternary structure of proteins.
Students will then watch a short video and work independently to answer review questions from the video. The following slide offers brief answers to these questions so that students may self-assess.
The lesson then progresses through a series of lecture style slides explaining enzyme involvement in chemical reactions, the structure of enzymes, and the two models of enzyme action.
Following these slides, students have an opportunity to work in pairs to teach each other the two enzyme action models. The information for each student in their pairs is provided as the last slide in the lesson. Students should take notes on both models in their books and are encouraged to sketch a ‘cartoon strip’ style diagram as an extra challenge.
Students are then asked to practise two exam style questions, worth 7 marks and 2 marks respectively. The slide following these questions offers a marking scheme so students may self-assess. After a short discussion on these two questions, students are tasked with a third exam question on enzyme action. This exam style question is attached as an additional resource for students to fill in the blank spaces as a worksheet which requires students to define important terms related to enzyme action.
As a plenary task to complete the lesson and check understanding, students are asked to complete one of four sentences in their books.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a starter to encourage discussion about the differences between the induced fit and lock and key models of enzyme action. Students are also asked to explain how temperature and pH balance affect enzyme action.
The following slide briefly reviews enzyme-controlled reactions then asks students to use their mini whiteboards to write down four factors that might affect successful collision. Students can self-assess with the answers on the slide.
Students are then taught to measure enzyme-catalysed reactions; in the notes I encourage you to ask students for examples and what the measurable changes are.
Students can then use the slide to work through the ‘fill in the blank style’ paragraph using a graph as a guide to understand enzyme-catalysed reaction. On the board where everyone can see you should write - substrate - product (H202 -> h2 + 02). The following slide includes answers so students may self-assess or check their answers with a partner.
The slides then work through a few more graphs to explain the effects of temperature and pH on enzyme action. The slides are lecture style, but you can see in my mores a few suggestions for discussion questions and further lecture material. Following these slides students are encouraged to graph on their own or perhaps as a large group.
Students are then given the opportunity to answer two graph style questions in their books and then self-assess.
Next the class will watch a video about measuring the rate of reaction at fixed points of time. After the video, students should answer four questions in their books and discuss the answers as a class. The next few slides build upon these questions and students are asked to practise calculating reaction rates on their own before self-assessing.
The plenary requires students to solve seven anagrams in their books, then write an original sentence with each word.
Each task or graph from the full lesson can be found on slides 22-27.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on prokaryotic cells and viruses begins with a starter discussion regarding the tissue of the stomach, and the difference between prokaryotic and eukaryotic cells.
Students should then work to fill in a table to recap the organelles of eukaryotic cells and their functions, in their notes.
The following slides introduce students to the features and content of prokaryotic cells, with a little memory test to help them label cell contents. Students can then self-assess against the slide before they move on to the next task where they will match cell structures to their role in the cell.
The next task is a ‘think>pair>share’ to compare and contrast prokaryotic and eukaryotic cells. Student partners can then work together to compare and contrast on a worksheet table and self-access.
Moving on to viruses! Students are asked to think and discuss the structure and function of viruses. They will also be asked to determine their confidence level for each of the outcome of the lesson by highlighting, in order to check their understanding.
In order to learn about cell division in prokaryotic cells students are then asked to use an animation to help them draw a simple diagram of binary fission in their books. They are then asked to watch a short video explaining the rate of division and then calculate the rate of division for each hour for eight hours.
Another video is included to help students complete a ‘fill in the blank’ passage about the replication of viruses, they can self-assess their passage on the following slide.
A past-paper question is also included for students to check their understanding of the lesson, they can then self or partner-assess their work.
As a plenary task, students should complete three sentences in their books describing what they have learned, what they already knew, and what they might like to learn more about.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a starter discussion to review the enzymes needed for DNA replication and the process of DNA replication itself. Students are then asked to make a list in their books of all of the biological processes that require energy.
Students are then taught to think of ATP as an ‘energy currency’ and on the following slide asked to define the parts of the structure of ATP before reviewing ATP’s function. Students should use the ‘ATP handout’ to take notes.
The next task asks students to answer a few questions on their mini whiteboards and discuss with a partner how ATP releases energy. Answers for self-assessment are on the next slide.
The following slides explain the synthesis, roles, and properties of ATP. You will find further details for these slides in the ‘notes’ section under each slide. Students are then encouraged to ‘think > pair > share’ some ideas of why ATP’s properties might be useful to the role of ATP in cells. Answers for self-assessment are on the following slide.
Students are then given an activity task to demonstrate knowledge of energy-requiring processes. Each student will be given a description of a process, these can be found at the end of the slideshow, there are five processes in total. Students should then work in small groups to teach each other the different processes and produce a table to represent what they’ve learned.
After completing the lecture and tasks students are given four summary questions to answer in their books and self or partner-assess. Students should then make note of the summary slide before concluding the lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a review discussion of ATP as an energy source and its role in plant cells. The next few slides are lecture-style and designed to teach students the properties of water as a biological molecule. The notes underneath the slides also offer some answers to the discussion questions on the slides.
Students are then given a four question ‘quick check’ to demonstrate their understanding so far. They should answer in their books and self-assess or check a partner’s work with the answers on the following slide.
Then students will each be given a reason why water is important; the two reasons can be found as descriptions at the end of the slideshow. Students should teach a partner with the opposite reason, then make notes in table form in their books before moving to the next slide which is a quick explanation of inorganic ions.
As a summary test, students are given two questions, the first of which includes a few sub-questions. Students should answer independently in their books then self-assess with the answers on the following slide. This is a good opportunity to answer any other questions!
The plenary task is to explain what they have learned through three facts, three key words, and a question to test their peers on.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a starter discussion to review materials from the ‘biological molecules’ module.
Students are then asked to begin thinking about types of cell by having a ‘think > pair > share’ discussion to define eukaryotic cells and their features. They can compare their answers to the diagram on the next slide which outlines of the main features of eukaryotic cells.
The first task of this lesson is for students to fill in their worksheet using information cards about each organelle. Students should synthesise the information, not just copy it into their worksheet. The worksheet and information cards are available at the end of the slideshow.
Using their mini whiteboards students are then guided to identify some photomicrographs from scanning and transmission electron microscopes. They should identify if the photomicrograph was taken by a scanning or transmission electron microscope, and bonus points if they can name the organelle!
Students are then given another worksheet task to fill in the blanks and can self-assess using the following slide.
The plenary task is to write a tweet about what they’ve learned!
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on cell specialisation and organisation begins with a discussion to review specialised cell examples. Students should also describe the difference between smooth and rough endoplasmic reticulum, as well as the role of chloroplasts.
To review organelles, students are then given a matching worksheet with descriptions of nine organelles. They can check the names of each with the answers on the slide. This task leads them to a series of organelle images to label and check as well.
Students are then tasked with past-paper questions to check their understanding of cell structure. A mark scheme is on the next slide.
To begin the discussion of cell specialisation students are tased with a worksheet to try with a partner. The worksheet asks students to consider what information each organelle can tell us. Suggested answers are on the following slides.
The lesson should then spark some conversation about the organisation of certain cells, before students work through a few slides of questions about cell organisation in general. After learning the levels of cell organisation students are led through a few examples to decide for themselves which level each example fits in.
To synthesise their learning, students will work through a ‘cut & stick’ task to create a table of each cell type and its characteristics. A completed table is on the following slide so students may self-asses.
The plenary for this lesson is to write three sentences in their book summarising what they’ve learned!
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on the plasma membrane begins with a quick discussion about the function of the cell surface membrane and the phospholipid bilayer. It also asks student to apply their knowledge to skin cells and solar radiation.
This discussion continues by asking students about the cell surface membrane and directs them to a worksheet task to identify cell membrane molecules. Students should watch a short video and make notes on this same worksheet as they listen.
To follow up on this introduction there are a few lecture slides to explain phospholipids, proteins, cholesterol, glycolipids and glycoproteins. Extra notes on each can be found below the slides.
Students will then view an animation of the fluid mosaic model as whole and label a diagram accordingly. They can self-asses to the following slide. Another video is attached to help explain why the model is called a “fluid mosaic” model which students should also summarise on their worksheet.
To synthesise their learning the students will work on a group task to build a 3D model using the “build a membrane” worksheet. When they have finished, they can practise once more through a true/false activity!
The next task is to answer the questions on the cell membrane worksheet, they may self-assess to the mark scheme on the following slide.
Not all cell membranes have the same composition, students should think>pair>share to discuss why this might be. Suggested answers are on the following slide.
The plenary task is a fun anagram challenge to reveal key terms from the lesson, as an extra challenge they can define each term as well!
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a review of total magnification and cell fractionation before defining the two main advantages of the electron microscope.
The following slides offer detailed notes on the parts of the electron microscope and their functions. Students will then fill in a table in their books using information notes which have been posted around the room. A self-assessment slide follows!
Students are then introduced to SEM and TEM and encouraged to compare the two before practising through a mini-whiteboard activity!
To consolidate the lesson, students will complete an exam-style question and self-assess to the following slide.
The plenary task is a series of answers for students to write the questions for.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
To begin this lesson on the methods of studying cells, students will review previous lessons by discussing the nature of water and the reasons water is important to living organisms. Students should also discuss the properties of ATP and the importance of those properties.
Students will then learn some of the basics of different microscopes. The slides then explain magnification and resolving power.
To prepare students to calculate total magnification, the students will work through a review slide on units of measurement then practise some unit conversions on their mini whiteboards!
The next few slides define total magnification and explain how to make sense of the actual size of a specimen. The previous exercise on unit conversion will be helpful here! A final example is shown before students are given a task with two magnification questions to complete in their books. They can self-access to the following slide.
Students can then complete an included worksheet on magnification calculation, answers are available on the next slide for self or partner-assessment. The attached Magnification Questions sheet also includes worked answers.
To explain cell fractionation students will watch a quick video then answer a few questions. The stages of cell fractionation are then set out in detail on the following slides, extra thoughts can be found in the notes below the slides. Students can then complete a grid activity to demonstrate each stage in their books.
The plenary task is to create quiz questions to test their peers on the methods of studying cells.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)