I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Chemical changes, Electrolysis and Energy Changes’ unit for the NEW AQA Chemistry Specification.
Lessons include:
The Reactivity Series
Displacement Reactions
Extracting Metals
Making Salts
Neutralisation & Strong/Weak Acids
Electrolysis
Aluminium Extraction
Exothermic & Endothermic Reactions
Reaction Profiles & Bond Energy Calculations
Chemical cells, batteries and fuel cells
The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a diagram to show how chemical cells/batteries work by relying upon the differing reactivity of metals. Students will then watch a video and will need to answer a set of questions using the information provided in the video, students can then self-assess their work using the mark scheme provided in the PowerPoint.
Students will now need to complete an investigation into the potential difference produced by different chemical cells by following the instructions on the practical sheet provided. Pupils will need to record the results of their investigation and write a conclusion on the practical worksheet.
The next task is a ‘Quick Check’ to assess students understanding of what they have learnt so far this lesson, pupils will need to complete a set of questions and they can then self-assess their work using the answers provided in the PowerPoint.
The last part of the lesson will focus on fuel cells, students will watch a video and using the information provided they will need to ask a set of questions. The answers to these questions are included in the PowerPoint, so students can check their work once this task is complete.
Finally, students will be given a set of information on hydrogen fuel cells which they can read in pairs. Using this information pupils will need to produce a table to sum the advantages and disadvantages of using hydrogen fuel cells as an energy source. Students can then check their work against answers provided in the PowerPoint.
The plenary task is for pupils to summarise what they have learnt this lesson in three sentences, using key words from the list provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first task is a recap on the differences between endothermic and exothermic reactions, students will need to complete a fill-in-the blank task which can then be self-assessed using the answers provided.
Next, students are introduced to reaction profiles with a diagram to demonstrate what is happening during an exothermic chemical reaction. Students will then be asked to use mini-whiteboards to draw a reaction profile for an endothermic reaction, they can check their ideas using the answer provided in the PowerPoint. The next slide shows the reaction profiles for both an endothermic and exothermic reaction, as well as an explanation of the energy changes which take place during these types of reaction. Pupils can take notes from this slide, including sketching a diagram of the two reaction profiles.
The next task is for pupils to complete is a progress check to assess their understanding of what they have learned so far, once complete pupils can self-assess or peer-assess their work using the answers provided.
Next, pupils will watch a video on activation energy, they will need to answer a set of questions using the information provided in the video. Pupils can self-assess their work using the mark scheme provided in the PowerPoint.
The next part of the lesson focuses on bond breaking/making and bond energies. Firstly, students are shown (using a diagram to demonstrate) what happens, in terms of energy changes, when bonds are broken or when bonds form during a chemical reaction. Students can then summarise what they have learnt so far by completing a fill-in-the-blank task, this task can be self-assessed using the mark scheme provided.
Lastly, students are introduced to bond energies and are shown how to calculate the energy change for a chemical reaction using a worked example. Students will then need to complete a worksheet on bond energy calculations. The mark scheme for the worksheet is included in the PowerPoint for pupils to self-assess or peer-assess their work.
The plenary task requires pupils to identify a WWW and EBI from the lesson, listing what went well/what they have fully understood and what they could do better next time.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils will firstly need to brainstorm ideas about the uses of aluminium, they can discuss their ideas with their partners and complete a mind map in their books. Some examples can then be revealed using the PowerPoint slide and pupils can check how many they got right, filling in any they may have missed.
Pupils will then watch a video on the extraction of aluminium, students will need to answer a set of questions using the information provided in the video. Their work can be self-assessed using the answers provided. Students will then need to summarise what they have learnt so far by completing a fill-in-the-blank task, students can check their work agaisnt the mark scheme provided.
Next, students will be given a diagram of the electrolysis of aluminium oxide, pupils will need to complete this diagram by selecting the correct captions from a list provided on the board. Students can then check their work against the answers provided in the PowerPoint.
The next task is a progress check, students will need to answer questions to assess their knowledge of what they have learnt so far this lesson. Pupils can then self or peer-assess their work using the answers provided.
The plenary task is a 3-2-1 task, pupils will need to write 3 facts, 2 key words and one question to assess their peers knowledge of the topics covered this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Firstly, students are introduced to the term ‘Electrolysis’ including a description of the process, a list of key words associated with the process and a diagram. Students will now watch a video about the process, using which students will need to answer a set of questions. After they have completed this task they will be able to self-assess their work using the mark scheme provided.
Students will now complete a fill-in-the-blank task to summarise what they have learnt so far, this can be assessed using the answers provided.
Pupils are now shown a diagram to demonstrate what is happening at the anode and cathode during the electrolysis of lead bromide, pupils will need to use the list of key words provided to complete captions to describe what is happening at each electrode. Students can check their work against the example answers provided in the PowerPoint.
Next, pupils are shown the ionic half-equations for the reactions occurring at the anode and cathode during the electrolysis of lead bromide. Pupils will then need to identify the products at each electrode, as well as complete the ionic half-equations, for the electrolysis of a set of ionic compounds: lihtium oxide, sodium chloride and magnesium chloride. Once complete, pupils can self-assess their work using the answers provided.
The next part of the lesson focuses on the products formed at each electrode when the ionic compound is within an aqueous solution. Students will be shown what will happen at the anode and at the cathode, using this information they will need to predict the products formed at the anode/cathode during the electroysis of set of solutions. Students can self-assess their using using the answers provided.
The final task focuses on the electrolysis of brine, students will watch a video and will need to answer a set of questions using the information provided in the video. After completing this task, pupils will need to self-assess their work using the answers provided.
The plenary task requires pupils to write a ‘Whatsapp’ message to a friend to explain what they have learnt this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Students will firstly be shown a set of images, students will have to decide which are examples of an alkali/base and which are examples of acids. Next, students will watch a video on acids/alkalis and will need to answer a set of questions, after which they can self-assess their work using the mark scheme provided.
The next part of the lesson focuses on pH, students are firstly reminded of the importance of the pH scale and will then need to complete an investigation to identify the pH of different substances. Students can use the practical sheet provided to complete this task, including the results table to record their results.
The next part of the lesson looks at the difference between concentrated and dilute solutions, in terms of particles and in terms of risk/hazards when handling concentrated acids. Students will then need to summarise what they have learned with a fill-in-the-blank task, this work can be self-assessed using the mark scheme provided.
The final part of the lesson pupils will focus on the difference between strong and weak acids in terms of ionisation. Students will also look at how pH values are related to the concentration of H+ ions, students will need to copy and complete a table to show the concentration of H+ ions per mol dm3 for each pH value, this work can then be self-assessed using the mark scheme provided.
The plenary task is a ‘Pick a plenary’ task - pupils will need to either write a twitter message to summarise what they have learnt or write 5 quiz questions on the topics studied in the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a definition of a salt and an introduction into chemical reactions between acids and metals to make a salt. Students are shown which salts form from using certain acids and will then need to complete a set of word equations, this work can be self-assessed using the mark scheme included in the PowerPoint.
Students will then need to complete a set word equations for a set of reactions between metals and acid, including the balanced symbol equations with state symbols. Students can either peer or self-assess their work using the mark scheme provided.
The next part of the lesson focuses on ionic equations, students are asked to write the ionic half equations for the reaction between magnesium and hydrochloric acid. Once students have completed this task, the answer as well as an explanation is included in the PowerPoint so pupils can check their own work. Now students are given a set of chemical reactions, for each one they will need to write the ionic half-equations. This work can also be self-assessed using the mark scheme included. To summarise this section of the lesson students will need to complete a fill-in-the-blank task.
The second half of the lesson, pupils will look at the reactions between an acid and a base and be shown how to generate the formulae of salts given the names of the metal or base and the acid. To check their understanding, pupils are now asked to complete a ‘quick check’ task, a set of questions on what they have learnt so far. This work can be self-assessed using the answers provided.
Finally, pupils are shown examples of chemical reactions between an acid and a alkali and acid and carbonates. Pupils will need to answer questions about these two types of reactions, work which can be self-assessed using the mark schemes included.
The plenary task is a ‘Silent 5’ task, pupils will need to write an account of what they have learned in the lesson today, including details of what they have understood well and what they would like to spend more time on.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a ‘Think > Pair > Share’ task whereby students need to consider what it means for a reaction to be in ‘equilibrium’ . After a class discussion, the definition of a reversible reaction (in a closed system) to be at equilibrium is revealed to the class, which they can note down in their books.
This is further explained using a set of diagrams to depict what happens to the concentration of reactants and products during the course of a reversible reaction. Students can sketch a graph into their book to show how the equilibrium of a reversible reaction is reached.
The next task focuses on ‘Le Chatelier’s Principle’, students are firstly introduced to the idea that the equilibrium of a reversible reaction can be altered by changing the conditions of that reaction, i.e. an increase in temperature. Students will then be shown a set of demonstrations (video links included) for each they will need to note down their observations, identify the conditions which are changing and match the correct reaction to the correct word equation. Pupils will complete a worksheet for this task, which will be assessed using the mark scheme provided.
For the next part of the lesson, students will watch a video on the effect of pressure on equilibrium and answer a set of questions. These questions can be self-assessed using the answers provided on the PowerPoint.
Students will now ‘Think > Pair > Share’ the effect of an increase in temperature on the equilibrium of a reversible reaction, the answer is then revealed to pupils using an example. Pupils will now complete a ‘Quick Check’ task where they will be required to answer a set of questions about the reversible reactions and the effect of altering conditions on dynamic equilibrium. Pupils can self-assess their work using the answers provided on the PowerPoint.
Finally, students will need to complete a summary sheet on the effect of pressure and temperature on the equilibrium of a reversible reactions, students can self assess their work using the answers provided.
The plenary task requires pupils to write down three sentences to summarise what they have learnt in today’s lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction to reversible reactions, including the example of thermal decomposition of ammonium chloride.
Pupils will then conduct an investigation into the energy changes which occur during a reversible reaction, using the practical sheet provided students will carry out the experiment and record their results in the table provided. The reversible reaction from this investigation is then shown on the board, with an explanation of the energy changes that are taking place as the reaction moves in either the forward or reverse direction.
Pupils will now watch a video on energy changes which take place during a reversible reaction, using this they will need to answer a set of questions. This work can be self-assessed using the answers provided on the PowerPoint presentation.
Pupils will now need to complete a ‘Quick Check’ task which includes questions within the module of ‘Rates of Reaction’, students can then self-assess or peer-assess their work using the mark scheme provided.
Finally, pupils can complete a crossword which summarizes definitions used within the ‘Rates of Reaction’ module, the answers for this are provided for self/peer assessment.
The plenary task required pupils to complete an exit card listing 3 things they have learnt today, 5 key words and 1 question to test their peers knowledge of a subject.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a video on catalyts, pupils will need to watch this and use the information provided to answer a set of questions. This work can then be self-assessed using the answers provided on the PowerPoint. This is followed by students sketching a reaction profile diagram into their books to show the effect of a catalyst on the activation energy of a reaction.
In the next task pupils will be given some information on catalysts, they will need to read through this and use this to complete a place-mat of questions. Once completed, students can either self-assess or peer-assess their work using the mark scheme provided.
Pupils will now work through a set of levelled questions on catalysts using data which is provided, pupils can then self-assess their work using the answers provided on the PowerPoint.
The final task is a true or false activity, pupils are given a set of statements which they need to decide are true or false. They can write their answers down on mini white boards so it is easier to assess the whole class.
The plenary activity requires pupils to talk to their partner, for a few minutes, about what they have learnt in the lesson today.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with students introduced to the idea of concentration in terms of no. of particles per cm3. Students will then need to ‘Think > Pair > Share’ their ideas of how an increase in concentration may affect the rate of a reaction.
Students can use their ideas from this first task to make a prediction for the investigation into the rate of reaction between sodium thiosulphate and different concentrations of HCl. Students will need to conduct this investigation using the practical sheet provided, record their results, plot a graph of their results and complete a conclusion. Students can assess their explanation of the results they collected using the answer provided in the PowerPoint presentation.
The next part of the lesson will focus on the effect of pressure on the rate of a reaction. Students will firstly be introduced to the idea of an increasing pressure leading to an increase in the number of particles per cm3, using this information and the diagrams provided pupils can ‘Think > Pair > Share’ their ideas about how an increase in pressure would affect the rate of a reaction. Their answer to this question can self-assessed using the answers provided.
Next, students need to work through a set of levelled questions on the effect of pressure on the rate of a reaction. This work can be self-assessed using the answers provided on the PowerPoint.
The last task is for pupils to plot a set of results onto graph paper, using these data they can calculate the initial rate of reactions for two concentrations of HCl. Students can assess their work using the mark scheme provided on the PowerPoint.
The plenary task is for pupils to write down three quiz questions (and the answers!) to test their peers knowledge of what they have learned in the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Students are firstly introduced to collision theory, outlining the conditions which need to be in place in order for a chemical reaction to occur. Next students are asked to ‘Think, Pair, Share’ factors which they think may affect the rate of a reaction, once students have had chance to discuss this they are introduced to the four main factors which they study within this topic.
Firstly, the lesson will focus on surface area, this factor is explained using apple slices turning brown as an example, students are then introduced to the relationship between surface area to volume ratio and the rate of reaction. Students will then need to complete a worksheet of surface area to volume ration calculations, this can then be self-assessed using the mark scheme available.
Students will now work through a set of levelled questions looking at data on the effect of surface area on the rate of reaction, this work can be self-assessed using the mark scheme provided in the PowerPoint presentation.
The next part of the lesson will focus on the effect of temperature on the rate of reaction, students will firstly need to answer questions whilst watching a video, this work can then be self-assessed using the mark scheme. Next, students will carry out an investigation into the effect of temperature on the rate of reaction between sodium thisulphate and hydrochloric acid. Students will need to collect data and use this to work out the rate of reaction at different temperatures, a worksheet is provided for this task.
The last task is for pupils to complete a ‘Quick Check’ set of questions in order to assess what they have learned this lesson, students can then either peer-assess or self-assess their work using the mark scheme provided.
The plenary task is for pupils to write a twitter message about what they have learned this lesson, included a hashtag of key words.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a ‘Think, Pair, Share’ task to get students thinking about what the rate of a reaction tells us about that chemical reaction. After a short partner and class discussion, the answer can be revealed to the class via the PowerPoint slide. This is followed by a task whereby students need to place a mixture of chemical reactions in order of their speed, getting students to think about which of these reactions might have the fastest rate of reaction.
Students are then introduced to the two ways in which scientists can measure the rate of reaction - how much product formed/how much reactant is used up over a given time. Students will be asked to read some information about this topic and then answer questions on it, this work can be self-assessed using the answers provided in the PowerPoint.
Students will then watch a video on how to calculate the rate of a reaction using a graph, students can self-assess their answers using those provided in the PowerPoint presentation. Students will then practice these skills by plotting a graph using a set of data, which they will then need to use to answer a set of questions, this can be self-assessed using the mark scheme provided.
The next video outlines how students can use a graph to a work out the rate of a reaction at a fixed point, students will answer questions whilst watching the video and then self-assess their work using the answers provided. Lastly, students will again practice this skill by plotting a graph using data provided and then will need to use the graph to work out the rate of reaction at different fixed points. This work can be self-assessed using the answers provided.
The plenary task is is for pupils to complete one of a choice of sentences starters, which would summarize what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Structure & Bonding’ unit for the NEW AQA Chemistry Specification.
Lessons include:
States of matter
Forming ions
Ionic bonding
Giant ionic lattices
Covalent bonding
Simple and giant covalent structures
Metallic bonding & giant metallic structures
Nanoparticles
The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an worked example of how to balance equations, after this pupils are asked to complete a fill-in-the-blank task to summarize the importance of balancing equations. This work can be assessed using the answers provided on the PowerPoint presentation.
There are two further worked examples for the teacher to go through using the PowerPoint presentation, pupils will specifically look at the number of atoms of each element on each side of the equation to decide whether it is balanced or not. If it is not balanced then the class can discuss how to go about balancing it and pupils can attempt to answer the problems.
The next worksheet is a set of equations, for each one the student must add up the number of atoms of each element on each side of the equation to decide if the equation is balanced or not. If it is not balanced students can have a go at balancing it, pupils can self-assess their work using the answers provided on the PowerPoint presentation. Finally pupils can have a go at balancing a list of equations, again the answers will be provided for pupils to assess their work.
The next part of the lesson pupils will look at reacting masses, pupils will be shown how they can use a balanced symbol equation to work out the reacting masses Pupils will be shown a worked example first, then be given the steps that they need to carry out the calculations themselves. Pupils will then be given a worksheet of problems to work their way through, this work can be self-assessed using the answers in the PowerPoint presentation.
Pupils will then be given a set of slightly harder problems to work through, these can be skipped for lower ability classes but would be useful to higher ability classes.
The last part of the lesson focuses on teaching students to use the masses of reactants to work out the balanced symbol equation for a reaction. Again, pupils are shown a worked example and given a set of steps to help them to complete the problems themselves. They will then be given a worksheet to complete a set of problems.
The plenary task requires students to write a twitter message on what they have learned about quantitative chemistry.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, for more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a description of an exothermic reaction, including examples such as the thermite reaction and the screaming jelly baby reaction. This includes link to videos to demonstrate the energy transfers which are taking place during these exothermic reactions.
Pupils are then asked to think>pair>share ideas about what an endothermic reaction might be and to come up with any examples if they can. Once students have had chance to discuss in groups, they can feedback to the class for a brief class discussion before the answer and examples are revealed using the PowerPoint presentation.
The next part of the lesson requires pupils to undertake an investigation into different reactions, they will identify whether three different chemical reactions are either endothermic or exothermic bu measuring the temperature change for each of them. Students should follow the instructions included and record their results in the table provided.
Students are now introduced to energy level diagrams to explain what is happening during an endothermic and exothermic reaction, they can sketch an example of each in their books for future lessons on energy profiles. The next part of the lesson will be a progress check, students should answer in their books and the work can be self-assessed using the answers provided.
The last part of the lesson is on uses of endothermic and exothermic reactions in products, students will each be given a card of information. They will need to share their information with others to complete a table in their books to describe each of the products, identify if it is an endothermic or exothermic reaction and evaluate the advantages and disadvantages.
The plenary task is for pupils to come up with their own product which uses either an endothermic or exothermic reaction.
Thank you, leave any questions in the comment section :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Students are firstly introduced to the idea of a displacement reaction using an example of aluminium and iron oxide, pupils will then be given a list of chemical reactions and for each one students will need to decide whether a displacement reaction will occur.
Students will now conduct an investigation whereby they will place a metal - copper, magnesium, iron and zinc - into copper sulphate solution and observe what happens. Using the results from this investigation, students should decide on the order of reactivity of these metals. Students are now given another list of reactions, for each one students need to now decide if a displacement reaction will take place and if so write out the word equation for each. Students can mark their work using the answers provided.
The next part of the lesson focuses on oxidation and reduction, firstly students are provided with a definition of these two processes. They are then shown how to write an ionic half equation to demonstrate what is happening what is happening during a displacement reaction, which metal has been oxidised and which has been reduced. Pupils need to complete the ionic half equations for a list of reactions, pupils can assess their work against the answers provided on the PowerPoint presentation.
The last task is a progress check, students need to work their way through a set of questions to assess what they have learnt this lesson. The answers to which are included on the PowerPoint slides forstudents to self-assess or peer-assess their work.
The plenary task is for pupils to write a twitter message about what they learnt this lesson, no more than 140 characters and #keywords!!
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson starts with students completing a ‘Think > Pair > Share’ activity whereby they need to consider some of the useful properties of metals Some example answers can be revealed using the PowerPoint presentation, some key word definitions are included for properties such as ‘malleable’ and ‘ductile’. The next task for pupils to complete is to decide which properties would be most suitable for a range of metal items - e.g. necklace, copper pipes.
Pupils will now either observe alkali metals being dropped into water as a demo or watch a video demonstrating this practical. During which students should record their observations in a table. Students are now asked to predict what will happen if rubidium and caesium are dropped into water. A video can be played to reveal what happens when these two alkali metals react with water so that students can check their answers.
Next, students are shown the general word equation for a reaction between a metal and water and will need to copy and complete for the reaction between potassium & water and lithium & water. Students can mark their work using the answers provided on the PowerPoint presentation. Pupils will now be shown four groups of metals and will need to match each group to the statement correctly describing the reactivity of those metals with water, their answers can be checked against the answers provided.
The next activity is for pupils to carry out a practical to observe the reactions between different types of metal and dilute hydrochloric acid. Students can draw their results table in their books and then follow the procedure to carry out the investigation, using the results they can decide upon an order of reactivity of the metals they have observed. They can also carry out an evaluation for the practical procedure that they followed.
The last part of the lesson focuses on the general word equation for when a metal reacts with an acid, students can use the example to complete the word equations for 5 more reactions between metals and dilute hydrochloric acid. Students can check their work against the answers provided on the PowerPoint presentation. The last task is a past-paper exam question, pupils can assess their work using the mark scheme provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 8 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Quantitative Chemistry’ unit for the NEW AQA Chemistry Specification.
Lessons included:
Relative formula mass and moles
Balancing equations and reacting masses
Limiting reactants and percentage yield
Atom economy HT
Concentration and titrations
Titration practical and calculations HT
Volume of gases
The lessons contain a mix of differentiated activities, progress check and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW and specifically designed for the higher tier GCSE chemistry students.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with students learning how to calculate the number of moles of a gas when you know the molar gas volume. Students will then work their way through a set of questions using this calculation, for latter questions students will need to rearrange the equation. This work can then be assessed using the answers provided in the PowerPoint presentation.
The next part of the lesson focuses on calculating the masses of gaseous reactants and products, firstly students are shown a worked example. The next task is for pupils to watch a video, using which they should answer a set of questions. Once this task has been completed students shoudl mark their work using the answers provided.
Using the formula they have learnt whilst watching the video, they should now complete a set of questions on a specific chemical reaction - this required students to calculate the volume of gases produced or the mass of a reactant needed to produce a certain amount of a gas product. This work can be self-assessed using the answers provided in the PowerPoint presentation.
The next task is a further set of problems requiring students to calculate the volume of gaseous reactants or products given a balanced symbol equation for a chemical reaction.
The last task requires pupils to come up with 4 exam questions on the topic of gas volumes, they should also include a mark scheme for each of the questions. Once they have competed their questions they should swap with the person next to them and complete their partners questions, these can be self or peer-assessed using the mark schemes they have written.
The plenary task is for pupils to write a WhatsApp message to their friends to tell them what they have learnt about this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)