I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an image of two atoms - one with less neutrons in the nucleus and one with more. Students are asked to ‘Think > Pair > Share’ their ideas about what make the atoms different from one another.
Next, students will be given a set of questions which they will need to answer whilst watching a video. The students will complete this task and once finished they will be able to mark their work using a the mark scheme that is provided on the PowerPoint presentation.
Students are now introduced to the idea of radioactive decay, students will be shown another video about ionising radiation. They will need to answer a set of questions whilst watching the video, the work can be self-assessed using the mark scheme available.
The latter part of the lesson focuses on the properties of alpha, beta and gamma radiation. Posters of information will be posted around the room, students will need to read this information and use this to answer a set of questions. The mark scheme is included so students can mark and correct their work.
The last task requires students to determine the number of protons and neutrons found within radioactive sources which have undergone alpha/beta decay. Students can then mark their work once it is complete.
The plenary task is for students to write a twitter message to demonstrate what they have learned today, making sure they #keywords.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson starts with an introduction into the differences between series and parallel circuits, students can take notes and draw a diagram of each type of circuit in their books. Students will then watch a video on series and parallel circuits, they will need to answer a set of questions in their books which focuses on how current and potential difference across components changes in a series vs. parallel circuit. Once this task is complete, students can then self-assess their work using the mark scheme provided.
Next, pupils have to identify whether a circuit is a series circuit or a parallel circuit from a set of diagrams. Then, students are given a worksheet of parallel and series circuits, given the current of the ammeter shown in the diagram they will need to work out the current of the ammeters placed elsewhere in the circuit. Students can then self or peer assess their work using the mark scheme provided.
The next part of the lesson focuses on the resistance of components found in series and parallel circuits. Firstly, students will be given the ‘Resistance Rule’ for components in a series circuit, as well as the calculation to work out total resistance in a series circuit. Using this, students can then answer some questions which can be self-assessed using the mark scheme provided.
Next, pupils are introduced to the ‘Resistance Rule’ for components placed in a parallel circuit. Once they have learned the rules, pupils can answer a set of questions which can then be either peer-assessed or self-assessed using the mark scheme provided.
The plenary task is a ‘Pick a plenary’ task - students can either summarise what they have learned this lesson in three sentences or they can write a definition for a set of key words from the ‘Electricity’ topic.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to the term ‘Ohmic conductor’, students are also shown a current-potential difference graph for a wire to demonstrate that in an Ohmic conductor the current is directly proportional to the potential difference.
Students will then conduct an investigation into whether the length of a wire will effect the resistance within the wire, students will complete the investigation using the method and once finished should draw a graph of their results and write a conclusion to summarise their findings. This work can be checked against answers provided within the PowerPoint presentation.
Next, students are shown a current-potential difference graph for a filament lamp and a diode. Students will be given a graph along with a set of questions to answer about these two graphs, once this task is complete students can self-assess their work using the mark scheme provided.
Students are then shown a diagram of a thermistor and light-dependent resistor and provided with an explanation of what happens to the resistance of these two components when the temperature and light are increased, respectively.
The last task is a past-paper exam question, those higher-ability students should try and complete these questions without looking at their notes. Once complete, the work can be either self or peer assessed using the mark scheme provided.
The plenary task requires pupils to complete one of the sentence starters to summarise what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to electric current, students can take notes in their books before watching a video about current. Whilst watching the video they should answer a set of questions in their books, the answers to which will then be revealed so students can assess their own work.
Students are now introduced to the charge flow calculation, whereby flow charge (measured in Coulombs) is calculated using the current (A) and time taken (seconds). Once pupils have made a note of this calculation they will then answer a set of questions in their books. The mark scheme for these questions is included in the PowerPoint for students to self-assess their work.
Students will now consider the effect of changing the resistance of a variable resistor on the brightness of a bulb in a series circuit. Once students have had a chance to consider this question, the answers will be revealed including an explanation.
The final part of the lesson requires pupils to complete a worksheet of questions which tests them on their knowledge of what they have learned this lesson.
The plenary task requires pupils to summarise what they have learned this lesson using 3 facts, 3 key words and 1 question to test their peers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a recap on background radiation, students need to create a mind map in their books of the different source of background radiation. Once this task is complete students can mark their work against the answers provided. This is followed by a task whereby students will complete a worksheet about background radiation, the mark scheme for this task is included so students can self-assess their own work.
Next, pupils will need to recap their knowledge of the dangers of alpha, beta and gamma radiation. Students will need to copy and complete a table which summarises the dangers of these three types of radiation, inside and outside the body. Students can self-assess this task once it has been completed, using the mark scheme provided.
The next part of the lesson focuses on radioactive waste, firstly students are given some information about the type of waste that is produced by a nuclear power plant. Students will then watch a video on the topic, during which they will need to answer a set of questions. This work can be marked and corrected using the answers provided.
Students are now shown information about Chernobyl and Fukishima, two videos on the topics help to demonstrate the ideas written on the PowerPoint presentation. This is followed by some details of designs for new nuclear reactors which will be built in the next 20 years, students need to understand the advances made in safety and design for third-generation nuclear reactors.
Lastly, pupils will complete a set of exam-style questions on radioactivity. This work can be self-assessed using the mark scheme provided.
The plenary requires pupils to come up with questions for a set of answers that are provided on the PowerPoint.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction into how to draw electrical circuit diagrams, a diagram is shown and students need to identify the correct components using the labels provided.
The next part of the lesson focuses on the roles of different electrical components, students will each be given a different piece of information about a component. They can then walk around the room, sharing information with each other in order to complete a table on the components and their roles. This work can then be self-assessed once students have completed it.
The next task will assess students understanding of these components in a ‘Quick Check - Who am I ?’ task. Pupils will need to identify the component from the description given, they can write their answers in their books and then check their work against the answers when they are revealed.
Pupils will the be reminded of the rules on how to draw a circuit diagram, before being given a list of descriptions of different circuits. Students need to draw the circuits that are being described, the answers to this task can then be revealed using the mark scheme in the PowerPoint presentation.
The last part of the lesson will require pupils to construct electrical circuits using electrical equipment, three diagrams of electrical circuits are provided to students, they need to use these to construct their own circuits.
The plenary task requires pupils to complete a word search, once the words have been found they should write a definition of each of them
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson starts with a video about the developments in the atomic model starting from Greek philosophers to 20th Century scientists. Pupils are given a set of questions to answer whilst watching the video, this work can be self-assess using answers provided.
Next, pupils are given a set of cards with bits of information about different scientists involved in the development of the model of the atom. Pupils should put these cards in order and then use the information on the cards to formulate a timeline in their books, they should use the information on the cards to add labels describing the work of each of the scientists.
Students will now be shown a video on ‘Scattering Experiments & the Development of the Nuclear Model’ - students will need to answer a set of questions whilst watching the video. The answers to the video are included in the PowerPoint so students can self-assess their work once it is complete.
A diagram of the ‘Gold Foil Experiment’ is then shown to pupils, along with a summary of conclusions drawn from this investigation. Students will then be given a worksheet to complete, summarising the findings of this investigation and how it contributed to the development of the Nuclear Model of the atom. The mark scheme to this task is also included in the PowerPoint for pupils to assess their work.
The plenary task is a word search, students will need to find a list of key words on the topic of ‘radioactivity’.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to the safety features of a plug which ensures that a person does not get electrocuted, this includes details of the role of the earth wire and the purpose of double insulation. Students will now be given some information about plugs, wall sockets and cables, using which they will need to answer a set of questions. Students can then use the mark scheme provided to self-assess or peer-assess their work.
Students will then look at why cables with different thicknesses are used for different purposes, students will complete notes on this topic by completing a fill-in-the-blank task. The mark scheme is included in the PowerPoint presentation so students can either self or peer assess their work.
The next part of the lesson focuses on fuses, students will watch a video about fuses and using the information provided in the video students will answer a set of questions. Once this task is complete students can check their work against the mark scheme provided.
Lastly, students will be given a past-paper question to complete, higher ability students could close their books and try to complete the question without their notes. The mark scheme for this task is included in the PowerPoint presentation for students to check their work.
The plenary task will require pupils to write a set of three quiz questions aimed at testing students knowledge of what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a video on electrical current and charge flow, students will need to answer a set of questions whilst they are watching the video. This work can then be self-assessed using the mark scheme provided.
Next, is a ‘Quick Check’ task where students will need to answer a set of questions using the calculation for rate of charge flow. Students will need to show their working for each of these questions, the answers are provided on the PowerPoint presentation so students can check their work against the mark scheme, making corrections where needed.
Next, the lesson introduces the formula for calculating the energy transferred to components within a circuit. Students can take notes using the PowerPoint presentation and then using the formula they should work their way through another ‘Quick Check’ task. The mark scheme for this task is also included in the PowerPoint presentation for pupils to self or peer assess their work.
The final part of the lesson focuses on energy transfers within a circuit. Firstly, a worked problem is shown to students before they have a go at working their way through another ‘progress check’, using knowledge of what they have learned so far this lesson.
The plenary task requires pupils to write a twitter message about what they have learned in the lesson, this must include #keywords!
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to the structure of the atom, students will be asked to identify the sub-atomic particles on a digram of an atom. This then leads into a task whereby students are asked to label a diagram of an atom and complete a fill-in-the-blank task, the answers to this are included in the PowerPoint presentation.
Next, students will complete a ‘memory test’ task where they will be given some information about the charges and relative masses of an electron, proton and neutron. They will be given a short time to remember this information before then having to copy it up from memory, their work can then be self-assessed using answers provided. Students will now complete a mid-lesson progress check to assess their understanding of what they have learned so far this lesson.
The next part of the lesson focuses on static charge, students will firstly watch a video about static electricity, during which they will need to answer a set of questions. Once complete this work can be self-assessed using the mark scheme provided.
Next, students will complete a fill-in-the-blank tast to summarise what they have learned so far, this work can also be self-assessed using the answers provided. The PowerPoint moves on to then explain how static charge is a non-contact force and a diagram is shown of an electric field of a charged object, students need to understand how two objects with opposite charges are attracted to each other.
The final task is a past-paper question on the topic of static charge, students can complete this task on the worksheet provided (higher ability students may want to complete this without their notes) and then the task can be self-assessed using the mark scheme.
The plenary task requires pupils to write a Whatsapp message to their friends explaining what they have learned this lesson!!
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Forces in Action’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction to force diagrams, students are given some information about how arrows can show the direction and size of forces acting upon an object. Students will then need to add force arrows to a diagram of a brick falling, this task can then be checked against the answer provided.
Students are now shown a ‘Tug of war’ diagram, students are asked to ‘Think > Pair > Share’ their ideas about which side would win and why. After a short class discussion, students are now introduced to the idea of balanced and unbalanced forces, using ‘tug of war’ images as examples. Students are then given some information outlining how the motion of an object is affected by balanced/unbalanced forces acting upon it.
Students will now complete a forces circuit to consider the type and size of forces acting upon different objects in the circus, students will need to identify the type/size of the forces and decide whether they are balanced or unbalanced. This task can be self-assessed once it is complete.
Students will now be introduced to the definition of resultant forces, and will be shown some examples of how to calculate resultant force using ‘tug of war’ examples again.
Students will now complete a couple of tasks to assess their knowledge of what they have learned so far on resultant forces, both tasks can be self-assessed using the mark scheme provided in the PowerPoint presentation.
Lastly, students are shown how to draw ‘Free-body Force Diagrams’, an example is given before students are asked to draw their own onces using the two scenarios provided. The work can be marked and corrected using the mark scheme provided.
The plenary task requires students to write a Whatsapp message to summarise what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson with a ‘Think > Pair > Share’ task where students will consider what they think may be happening during a ‘Nuclear Fusion’ or ‘Nuclear Fission’ reaction. Once students have fed back as a class discussion, the definitions for each process can be revealed using the PowerPoint.
Students will now watch a video outlining the basic principles of these two processes, whilst watching the video they will answer a set of questions. Once this work has been completed they can self-assess using the mark scheme provided.
Next, students are shown a diagram of a chain reaction, students will need to sketch a cope of this into their books alongside an explanation of this process in context of nuclear fission.
The next activity requires students, in pairs, to teach each other about the principles of a nuclear reactor vs. fusion reactor, after being given a set of information on the topic. Students will then need to answer a set of questions into their books about these two types of reactors, the work can be self-assessed using the mark scheme provided.
Lastly, students will complete a radioactivity crossword based upon knowledge they have learned throughout the radioactivity topic, the answers to this task is also included so pupils can mark their own work.
The plenary requires students to complete a set of sentence starters to summarise what they have learned this lesson, what they already knew about this topic before the lesson and what they would like to learn more about.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to the differences between alternating and direct current, demonstrate with a diagram and a video. Students will then watch another video, using which they will answer a set of questions about alternating current, direct current and the use of oscilloscopes. Once this task has been completed students can self-assess their work using the mark scheme provided in the power point presentation.
The next task will require pupils to read a set of information about wiring within three-pin plugs before sketching a diagram of the plug and completing a table to summarise the colour and roles of the live, neutral and earth wires. Again, this work can be self-assessed using the mark scheme provided. Students will then need to sketch a diagram of an oscilloscope trace from an a.c. and d.c. supply and provide some notes about what these two traces are showing us.
The next part of the lesson will focus on the National Grid, firstly students will observe a simplified diagram of the route taken by an electric current from the power station to people’s homes, this route involves the electric current passing through a step-up and step-down transformer. Students will need to watch a video and then summarise the role of these two types of transformers. This task can be self-assessed against the answer provided in the PowerPoint presentation.
Next, the PowerPoint presentation explains why it is important to keep the voltage in the overhead cables very high and the current very low - to reduce resistance. Students will then need to complete a fill-in-the-blank task to sum up the main points about the National Grid.
The last part of the lesson will require pupils to observe oscilloscope traces for different a.c. supplies, firstly they will be shown how to work out the period, they will need to apply this to each oscilloscope trace. Then using the period, they will need to calculate the frequency for each trace - making sure they show all their working! Once this task is complete pupils can self or peer assess their work using the mark scheme provided.
The plenary task is an exit card, students are asked to write down three facts they have learned during the lesson, five key words and one question to test their peers knowledge.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson aimed at the NEW AQA Trilogy 'Particle models of matter' SoW for the new Physics specification.
The lesson begins by recapping on the definitions of melting point, boiling point and freezing point. Pupils will also be asked to consider why salt is added to a pan of water or to roads which may become icy to get them thinking about how impurities can affect the melting/boiling point of a substance.
This then leads on to the introduction of a temperature-time graph demonstrating changes in state, pupils will need to sketch the graph and then match statements to the correct numbered step on the graph.
The next slide introduces the idea of latent heat, this will be explored in more detail in a separate lesson. In the next activity pupils will use data to produce a graph and then answer questions on the data they have produced.
The plenary activity is a past-paper question, mark scheme provided for pupils to peer-assess their work.
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Forces in Action’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to moments, using a spanner. Students are then introduced to the calculation - moment = force x distance from the pivot.
Students are then shown a worked example using the calculation, before being presented with a problem to solve themselves. Next, students are shown a diagram of a man pushing down on one side of a see saw, at the other side is a bag of money. This diagram is labeled to show the effort force, pivot and load.
Students are then given a worksheet on levers, students will need to identify the effort force, pivot and load in each of the diagrams and also match the key words to the correct definition. This work can be self-assessed using the mark scheme provided once it is complete.
The last two tasks are assessment tasks, firstly students will copy and complete the paragraph, using the key words provided, to summarise what they have learned this lesson. This can then be self-assessed using the mark scheme provided. Lastly, students are presented with a set of moment problems, using the calculation they learned at the beginning of the lesson students will need to work through these calculations. The mark scheme for this task is also included so students can self-assess or peer-assess their work.
Lastly, students will be shown a diagram of apparatus which can be used to investigate the turning effect of a force. Students are asked some questions about this investigation, they will then need to complete a ‘Quick Check’ task which will assess students knowledge of what they have learned this lesson. This task can then be self-assessed using the mark scheme provided.
The plenary task requires students to copy and complete a sentence starter to summarise what they have learned this lesson.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
The plenary task requires students to write a Whatsapp message to summarise what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 4 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 P4 ‘Space’ Unit.
Lessons include:
The Night Sky
The Solar System
The Earth
The Moon
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This bundle of resources contains 5 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 P1 ‘Forces’ Unit.
Lessons include:
Introduction to Forces
Stretching & Squashing Forces
Friction & Drag Forces
Forces at a Distance: Non-contact Forces
Balanced & Unbalanced Forces
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This bundle of resources contains 5 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 P2 ‘Sound’ Unit.
Lessons include:
Waves
Sound & Energy Transfer
Loudness & Pitch
Detecting Sound
Echoes & Ultrasound
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 P3 ‘Light’ Unit.
Lessons include:
Light
Reflections
Refractions
The eye and The Camera
Colour
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This bundle of resources contains 7 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 8 'Electricity & Magnetism’ Unit.
Lessons include:
Charging Up
Current & Charge
Resistance
Potential difference
Series & Parallel Circuits
Magnets & Magnetic Fields
Electromagnets
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.