91Uploads
550Views
7Downloads
All resources
A-Level Further Statistics - Continuous Random Variables Lesson Worksheet + Answers
Use a probability density function which may be defined piecewise
Use the general result E(g(x)) =∫f(x)g(x) dx where f(x) is the probability density function of the continuous random variable X and g(X) is a function of X
Understand and use the relationship between the probability density function (PDF) and the cumulative distribution function (CDF), and use either to evaluate probabilities or percentiles
Use cumulative distribution functions (CDFs) of related variables in simple cases e.g. given the CDF of a variable X, find the CDF of a related variable Y, and hence its PDF, e.g. where Y = X^ 3.
A-Level Further Statistics – Continuous Random Variables Booklet + Answers
Use a probability density function which may be defined piecewise
Use the general result E(g(x)) =∫f(x)g(x) dx where f(x) is the probability density function of the continuous random variable X and g(X) is a function of X
Understand and use the relationship between the probability density function (PDF) and the cumulative distribution function (CDF), and use either to evaluate probabilities or percentiles
Use cumulative distribution functions (CDFs) of related variables in simple cases e.g. given the CDF of a variable X, find the CDF of a related variable Y, and hence its PDF, e.g. where Y = X^ 3.
A-Level Further Statistics – Continuous Random Variables Test PPT
Use a probability density function which may be defined piecewise
Use the general result E(g(x)) =∫f(x)g(x) dx where f(x) is the probability density function of the continuous random variable X and g(X) is a function of X
Understand and use the relationship between the probability density function (PDF) and the cumulative distribution function (CDF), and use either to evaluate probabilities or percentiles
Use cumulative distribution functions (CDFs) of related variables in simple cases e.g. given the CDF of a variable X, find the CDF of a related variable Y, and hence its PDF, e.g. where Y = X^ 3.
A-Level Further Statistics – Continuous Random Variable PPT and Lesson Booklet
Use a probability density function which may be defined piecewise
Use the general result E(g(x)) =∫f(x)g(x) dx where f(x) is the probability density function of the continuous random variable X and g(X) is a function of X
Understand and use the relationship between the probability density function (PDF) and the cumulative distribution function (CDF), and use either to evaluate probabilities or percentiles
Use cumulative distribution functions (CDFs) of related variables in simple cases e.g. given the CDF of a variable X, find the CDF of a related variable Y, and hence its PDF, e.g. where Y = X^ 3.
A-Level Further Statistics - Test for Goodness of Fit PPT+ Lesson Worksheet
Use a χ2-test, with the appropriate number of degrees of freedom, to carry out the corresponding goodness of fit analysis
A-Level Further Statistics - Test for Independence PPT+ Lesson Worksheet
Use a χ2-test, with the appropriate number of degrees of freedom, for independence in a contingency table.
A-Level Further Statistics - Chi-square Tests Booklet + Answers
Fit a theoretical distribution, as prescribed by a given hypothesis, to given data
Use a χ2-test, with the appropriate number of degrees of freedom, to carry out the corresponding goodness of fit analysis
Use a χ2-test, with the appropriate number of degrees of freedom, for independence in a contingency table.
A-Level Further Statistics - Chi-square Test PPT
Fit a theoretical distribution, as prescribed by a given hypothesis, to given data
Use a χ2-test, with the appropriate number of degrees of freedom, to carry out the corresponding goodness of fit analysis
Use a χ2-test, with the appropriate number of degrees of freedom, for independence in a contingency table.
A-Level Further Statistics – Chi-square Tests PPT and Lesson Booklet
Fit a theoretical distribution, as prescribed by a given hypothesis, to given data
Use a χ2-test, with the appropriate number of degrees of freedom, to carry out the corresponding goodness of fit analysis
Use a χ2-test, with the appropriate number of degrees of freedom, for independence in a contingency table.
A-Level Further Mechanics -Circular Motion Lesson Worksheet + Answers
Understand the concept of angular speed for a particle moving in a circle, and use the relation v = rw
Understand that the acceleration of a particle moving in a circle with constant speed is directed towards the centre of the circle, and use the formulae r w^2 and v^2/r
Solve problems which can be modelled by the motion of a particle moving in a horizontal circle with constant speed
Solve problems which can be modelled by the motion of a particle in a vertical circle without loss of energy.
Find a normal contact force or the tension in a string, locating points at which these are zero, and conditions for complete circular motion.
A-Level Further Mechanics Momentum Booklet + Answers
Recall Newton’s experimental law and the definition of the coefficient of restitution, the property 0 ≤ e ≤ 1, and the meaning of the terms ‘perfectly elastic’ (e = 1) and ‘inelastic’ (e = 0)
Use conservation of linear momentum and/or Newton’s experimental law to solve problems that may be modelled as the direct or oblique impact of two smooth spheres, or the direct or oblique impact of a smooth sphere with a fixed surface.
A-Level Further Mechanics - Momentum PPT
Recall Newton’s experimental law and the definition of the coefficient of restitution, the property 0 ≤ e ≤ 1, and the meaning of the terms ‘perfectly elastic’ (e = 1) and ‘inelastic’ (e = 0)
Use conservation of linear momentum and/or Newton’s experimental law to solve problems that may be modelled as the direct or oblique impact of two smooth spheres, or the direct or oblique impact of a smooth sphere with a fixed surface.
A-Level Further Mechanics – Momentum PPT and Lesson Booklet
Recall Newton’s experimental law and the definition of the coefficient of restitution, the property 0 ≤ e ≤ 1, and the meaning of the terms ‘perfectly elastic’ (e = 1) and ‘inelastic’ (e = 0)
Use conservation of linear momentum and/or Newton’s experimental law to solve problems that may be modelled as the direct or oblique impact of two smooth spheres, or the direct or oblique impact of a smooth sphere with a fixed surface.
A-Level Further Mechanics - Equilibrium of a Rigid Body Booklet + Answers
Calculate the moment of a force about a point
Use the result that the effect of gravity on a rigid body is equivalent to a single force acting at the centre of mass of the body, and identify the position of the centre of mass of a uniform body using considerations of symmetry
Use given information about the position of the centre of mass of a triangular lamina and other simple shapes
Determine the position of the centre of mass of a composite body by considering an equivalent system of particles
Use the principle that if a rigid body is in equilibrium under the action of coplanar forces
then the vector sum of the forces is zero and the sum of the moments of the forces about any point is zero, and the converse of this
Solve problems involving the equilibrium of a single rigid body under the action of coplanar forces, including those involving toppling or sliding.
A-Level Further Mechanics - Equilibrium of a Rigid Body PPT
Calculate the moment of a force about a point
Use the result that the effect of gravity on a rigid body is equivalent to a single force acting at the centre of mass of the body, and identify the position of the centre of mass of a uniform body using considerations of symmetry
Use given information about the position of the centre of mass of a triangular lamina and other simple shapes
Determine the position of the centre of mass of a composite body by considering an equivalent system of particles
Use the principle that if a rigid body is in equilibrium under the action of coplanar forces
then the vector sum of the forces is zero and the sum of the moments of the forces about any point is zero, and the converse of this
Solve problems involving the equilibrium of a single rigid body under the action of coplanar forces, including those involving toppling or sliding.
A-Level Further Mechanics – Equilibrium of a Rigid Body PPT and Lesson Booklet
Calculate the moment of a force about a point
Use the result that the effect of gravity on a rigid body is equivalent to a single force acting at the centre of mass of the body, and identify the position of the centre of mass of a uniform body using considerations of symmetry
Use given information about the position of the centre of mass of a triangular lamina and other simple shapes
Determine the position of the centre of mass of a composite body by considering an equivalent system of particles
Use the principle that if a rigid body is in equilibrium under the action of coplanar forces
then the vector sum of the forces is zero and the sum of the moments of the forces about any point is zero, and the converse of this
Solve problems involving the equilibrium of a single rigid body under the action of coplanar forces, including those involving toppling or sliding.
A-Level Further Mechanics - Hooke’s Law Booklet + Answers
Use Hooke’s law as a model relating the force in an elastic string or spring to the extension or compression, and understand the term modulus of elasticity
Use the formula for the elastic potential energy stored in a string or spring
Solve problems involving forces due to elastic strings or springs, including those where considerations of work and energy are needed
A-Level Further Mechanics - Hooke’s Law PPT
Use Hooke’s law as a model relating the force in an elastic string or spring to the extension or compression, and understand the term modulus of elasticity
Use the formula for the elastic potential energy stored in a string or spring
Solve problems involving forces due to elastic strings or springs, including those where considerations of work and energy are needed
A-Level Further Mechanics - Hooke’s Law PPT and Lesson Booklet
Use Hooke’s law as a model relating the force in an elastic string or spring to the extension or compression, and understand the term modulus of elasticity
Use the formula for the elastic potential energy stored in a string or spring
Solve problems involving forces due to elastic strings or springs, including those where considerations of work and energy are needed
A-Level Further Mechanics - Linear Motion under a Variable Force Booklet + Answers
Solve problems which can be modelled as the linear motion of a particle under the action of a variable force.
Setting up and solving an appropriate differential equation involving variable force.